ACE-CNN: approximate carry disregard multipliers for energy-efficient CNN-based image classification

This paper presents the design and development of Signed Carry Disregard Multiplier (SCDM8), a family of signed approximate multipliers tailored for integration into Convolutional Neural Networks (CNNs). Extensive experiments were conducted on popular pre-trained CNN models, including VGG16, VGG19,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shakibhamedan, Salar (VerfasserIn) , Amirafshar, Nima (VerfasserIn) , Baroughi, Ahmad Sedigh (VerfasserIn) , Shahhoseini, Hadi Shahriar (VerfasserIn) , Taherinejad, Nima (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2024
In: IEEE transactions on circuits and systems. 1, Regular papers
Year: 2024, Jahrgang: 71, Heft: 5, Pages: 2280-2293
ISSN:1558-0806
DOI:10.1109/TCSI.2024.3369230
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/TCSI.2024.3369230
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1109%2FTCSI.2024.3369230&DestApp=DOI&SrcAppSID=EUW1ED0F43bzmle4M5CqqQBSdgNxH&SrcJTitle=IEEE+TRANSACTIONS+ON+CIRCUITS+AND+SYSTEMS+I-REGULAR+PAPERS&DestDOIRegistrantName=Institute+of+Electrical+and+Electronics+Engineers
Volltext
Verfasserangaben:Salar Shakibhamedan, Nima Amirafshar, Graduate Student Member, IEEE, Ahmad Sedigh Baroughi , Hadi Shahriar Shahhoseini, and Nima Taherinejad, Member, IEEE

MARC

LEADER 00000caa a2200000 c 4500
001 1895988691
003 DE-627
005 20241205153458.0
007 cr uuu---uuuuu
008 240722s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TCSI.2024.3369230  |2 doi 
035 |a (DE-627)1895988691 
035 |a (DE-599)KXP1895988691 
035 |a (OCoLC)1475303588 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Shakibhamedan, Salar  |e VerfasserIn  |0 (DE-588)1336458593  |0 (DE-627)1895989175  |4 aut 
245 1 0 |a ACE-CNN  |b approximate carry disregard multipliers for energy-efficient CNN-based image classification  |c Salar Shakibhamedan, Nima Amirafshar, Graduate Student Member, IEEE, Ahmad Sedigh Baroughi , Hadi Shahriar Shahhoseini, and Nima Taherinejad, Member, IEEE 
264 1 |c May 2024 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 01. März 2024 
500 |a Gesehen am 22.07.2024 
520 |a This paper presents the design and development of Signed Carry Disregard Multiplier (SCDM8), a family of signed approximate multipliers tailored for integration into Convolutional Neural Networks (CNNs). Extensive experiments were conducted on popular pre-trained CNN models, including VGG16, VGG19, ResNet101, ResNet152, MobileNetV2, InceptionV3, and ConvNeXt-T to evaluate the trade-off between accuracy and approximation. The results demonstrate that ACE-CNN outperforms other configurations, offering a favorable balance between accuracy and computational efficiency. In our experiments, when applied to VGG16, SCDM8 achieves an average reduction in power consumption of 35% with a marginal decrease in accuracy of only 1.5%. Similarly, when incorporated into ResNet152, SCDM8 yields an energy saving of 42% while sacrificing only 1.8% in accuracy. ACE-CNN provides the first approximate version of ConvNeXt which yields up to 72% energy improvement at the price of less than only 1.3% Top-1 accuracy. These results highlight the suitability of SCDM8 as an approximation method across various CNN models. Our analysis shows that the ACE-CNN outperforms state-of-the-art approaches in accuracy, energy efficiency, and computation precision for image classification tasks in CNNs. Our study investigated the resiliency of CNN models to approximate multipliers, revealing that ResNet101 demonstrated the highest resiliency with an average difference in the accuracy of 0.97%, whereas LeNet5 Inspired-CNN exhibited the lowest resiliency with an average difference of 2.92%. These findings aid in selecting energy-efficient approximate multipliers for CNN-based systems, and contribute to the development of energy-efficient deep learning systems by offering an effective approximation technique for multipliers in CNNs. The proposed SCDM8 family of approximate multipliers opens new avenues for efficient deep learning applications, enabling significant energy savings with virtually no loss in accuracy. 
650 4 |a 4-2 COMPRESSORS 
650 4 |a approximate multiplier 
650 4 |a Computer architecture 
650 4 |a convolutional neural network 
650 4 |a Convolutional neural networks 
650 4 |a Delays 
650 4 |a DESIGN 
650 4 |a Energy efficiency 
650 4 |a Hardware 
650 4 |a image classification 
650 4 |a Image classification 
650 4 |a Task analysis 
700 1 |a Amirafshar, Nima  |e VerfasserIn  |4 aut 
700 1 |a Baroughi, Ahmad Sedigh  |e VerfasserIn  |4 aut 
700 1 |a Shahhoseini, Hadi Shahriar  |e VerfasserIn  |4 aut 
700 1 |a Taherinejad, Nima  |e VerfasserIn  |0 (DE-588)127517549X  |0 (DE-627)1826739688  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on circuits and systems. 1, Regular papers  |d New York, NY : Institute of Electrical and Electronics Engineers, 2004  |g 71(2024), 5 vom: Mai, Seite 2280-2293  |h Online-Ressource  |w (DE-627)324532180  |w (DE-600)2028230-8  |w (DE-576)094080798  |x 1558-0806  |7 nnas 
773 1 8 |g volume:71  |g year:2024  |g number:5  |g month:05  |g pages:2280-2293  |g extent:14  |a ACE-CNN approximate carry disregard multipliers for energy-efficient CNN-based image classification 
856 4 0 |u https://doi.org/10.1109/TCSI.2024.3369230  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1109%2FTCSI.2024.3369230&DestApp=DOI&SrcAppSID=EUW1ED0F43bzmle4M5CqqQBSdgNxH&SrcJTitle=IEEE+TRANSACTIONS+ON+CIRCUITS+AND+SYSTEMS+I-REGULAR+PAPERS&DestDOIRegistrantName=Institute+of+Electrical+and+Electronics+Engineers  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240722 
993 |a Article 
994 |a 2024 
998 |g 127517549X  |a Taherinejad, Nima  |m 127517549X:Taherinejad, Nima  |d 700000  |d 720000  |e 700000PT127517549X  |e 720000PT127517549X  |k 0/700000/  |k 1/700000/720000/  |p 5  |y j 
999 |a KXP-PPN1895988691  |e 4555316509 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title_sort":"ACE-CNN","title":"ACE-CNN","subtitle":"approximate carry disregard multipliers for energy-efficient CNN-based image classification"}],"person":[{"family":"Shakibhamedan","given":"Salar","role":"aut","display":"Shakibhamedan, Salar"},{"display":"Amirafshar, Nima","role":"aut","given":"Nima","family":"Amirafshar"},{"role":"aut","given":"Ahmad Sedigh","display":"Baroughi, Ahmad Sedigh","family":"Baroughi"},{"family":"Shahhoseini","role":"aut","given":"Hadi Shahriar","display":"Shahhoseini, Hadi Shahriar"},{"display":"Taherinejad, Nima","given":"Nima","role":"aut","family":"Taherinejad"}],"name":{"displayForm":["Salar Shakibhamedan, Nima Amirafshar, Graduate Student Member, IEEE, Ahmad Sedigh Baroughi , Hadi Shahriar Shahhoseini, and Nima Taherinejad, Member, IEEE"]},"relHost":[{"language":["eng"],"part":{"text":"71(2024), 5 vom: Mai, Seite 2280-2293","year":"2024","volume":"71","pages":"2280-2293","extent":"14","issue":"5"},"title":[{"title_sort":"IEEE transactions on circuits and systems","subtitle":"a publication of the IEEE Circuits and Systems Society","title":"IEEE transactions on circuits and systems","partname":"Regular papers"}],"pubHistory":["Volume 51, number 1 (January 2004)-"],"origin":[{"dateIssuedKey":"2004","publisher":"Institute of Electrical and Electronics Engineers","dateIssuedDisp":"2004-","publisherPlace":"New York, NY"}],"recId":"324532180","titleAlt":[{"title":"IEEE transactions on circuits and systems / 1"},{"title":"Transactions on circuits and systems"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 18.08.2022"],"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"},{"role":"isb","display":"IEEE Circuits and Systems Society"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on circuits and systems. 1, Regular papers","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["324532180"],"issn":["1558-0806"],"zdb":["2028230-8"],"doi":["10.1109/TCSI.8919"]}}],"note":["Veröffentlicht: 01. März 2024","Gesehen am 22.07.2024"],"physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"id":{"eki":["1895988691"],"doi":["10.1109/TCSI.2024.3369230"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"May 2024"}],"recId":"1895988691","type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a SHAKIBHAMEACECNN2024