A discretize-then-optimize approach to PDE-constrained shape optimization
We consider discretized two-dimensional PDE-constrained shape optimization problems, in which shapes are represented by triangular meshes. Given the connectivity, the space of admissible vertex positions was recently identified to be a smooth manifold, termed the manifold of planar triangular meshes...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
28 February 2024
|
| In: |
Control, optimisation and calculus of variations
Year: 2024, Jahrgang: 30, Pages: 1-36 |
| ISSN: | 1262-3377 |
| DOI: | 10.1051/cocv/2023071 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1051/cocv/2023071 Verlag, kostenfrei, Volltext: https://www.esaim-cocv.org/articles/cocv/abs/2024/01/cocv210177/cocv210177.html |
| Verfasserangaben: | Roland Herzog and Estefanía Loayza-Romero |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1896205216 | ||
| 003 | DE-627 | ||
| 005 | 20241205154149.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240724s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1051/cocv/2023071 |2 doi | |
| 035 | |a (DE-627)1896205216 | ||
| 035 | |a (DE-599)KXP1896205216 | ||
| 035 | |a (OCoLC)1475304229 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Herzog, Roland |d 1974- |e VerfasserIn |0 (DE-588)1032195827 |0 (DE-627)738007285 |0 (DE-576)379874830 |4 aut | |
| 245 | 1 | 2 | |a A discretize-then-optimize approach to PDE-constrained shape optimization |c Roland Herzog and Estefanía Loayza-Romero |
| 264 | 1 | |c 28 February 2024 | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 24.07.2024 | ||
| 520 | |a We consider discretized two-dimensional PDE-constrained shape optimization problems, in which shapes are represented by triangular meshes. Given the connectivity, the space of admissible vertex positions was recently identified to be a smooth manifold, termed the manifold of planar triangular meshes. The latter can be endowed with a complete Riemannian metric, which allows large mesh deformations without jeopardizing mesh quality; see R. Herzog and E. Loayza-Romero, Math. Comput. <b>92<b/> (2022) 1-50. Nonetheless, the discrete shape optimization problem of finding optimal vertex positions does not, in general, possess a globally optimal solution. To overcome this ill-possedness, we propose to add a mesh quality penalization term to the objective function. This allows us to simultaneously render the shape optimization problem solvable, and keep track of the mesh quality. We prove the existence of a globally optimal solution for the penalized problem and establish first-order necessary optimality conditions independently of the chosen Riemannian metric. Because of the independence of the existence results of the choice of the Riemannian metric, we can numerically study the impact of different Riemannian metrics on the steepest descent method. We compare the Euclidean, elasticity, and a novel complete metric, combined with Euclidean and geodesic retractions to perform the mesh deformation. | ||
| 700 | 1 | |a Loayza Romero, Karen |d 1991- |e VerfasserIn |0 (DE-588)1253492433 |0 (DE-627)1795633425 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Control, optimisation and calculus of variations |d Les Ulis : EDP Sciences, 1995 |g 30(2024), Artikel-ID 11, Seite 1-36 |h Online-Ressource |w (DE-627)324913435 |w (DE-600)2032256-2 |w (DE-576)306829274 |x 1262-3377 |7 nnas |a A discretize-then-optimize approach to PDE-constrained shape optimization |
| 773 | 1 | 8 | |g volume:30 |g year:2024 |g elocationid:11 |g pages:1-36 |g extent:36 |a A discretize-then-optimize approach to PDE-constrained shape optimization |
| 856 | 4 | 0 | |u https://doi.org/10.1051/cocv/2023071 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.esaim-cocv.org/articles/cocv/abs/2024/01/cocv210177/cocv210177.html |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240724 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1032195827 |a Herzog, Roland |m 1032195827:Herzog, Roland |d 700000 |d 708000 |e 700000PH1032195827 |e 708000PH1032195827 |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1896205216 |e 4556753988 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"title":[{"title_sort":"Control, optimisation and calculus of variations","title":"Control, optimisation and calculus of variations","subtitle":"COCV = Contrôle, optimisation et calcul des variations"}],"physDesc":[{"extent":"Online-Ressource"}],"titleTranslated":[{"translated":"Contrôle, optimisation et calcul des variations"}],"language":["eng","fre"],"disp":"A discretize-then-optimize approach to PDE-constrained shape optimizationControl, optimisation and calculus of variations","note":["Gesehen am 19.02.25"],"name":{"displayForm":["Société de Mathematiques Appliquées et Industrielles, SMAI"]},"pubHistory":["1.1995/96 -"],"part":{"year":"2024","extent":"36","volume":"30","text":"30(2024), Artikel-ID 11, Seite 1-36","pages":"1-36"},"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"eki":["324913435"],"issn":["1262-3377"],"zdb":["2032256-2"]},"origin":[{"dateIssuedKey":"1995","publisherPlace":"Les Ulis ; Les Ulis ; Cambridge [u.a.]","dateIssuedDisp":"1995-","publisher":"EDP Sciences ; EDP Sciences ; Cambridge Univ. Press"}],"recId":"324913435","titleAlt":[{"title":"Control, Optimisation and Calculus of Variations"},{"title":"COCV"},{"title":"ESAIM"}]}],"title":[{"title":"A discretize-then-optimize approach to PDE-constrained shape optimization","title_sort":"discretize-then-optimize approach to PDE-constrained shape optimization"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1896205216"],"doi":["10.1051/cocv/2023071"]},"physDesc":[{"extent":"36 S."}],"language":["eng"],"person":[{"given":"Roland","family":"Herzog","role":"aut","display":"Herzog, Roland"},{"given":"Karen","family":"Loayza Romero","role":"aut","display":"Loayza Romero, Karen"}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"28 February 2024"}],"note":["Gesehen am 24.07.2024"],"name":{"displayForm":["Roland Herzog and Estefanía Loayza-Romero"]},"recId":"1896205216"} | ||
| SRT | |a HERZOGROLADISCRETIZE2820 | ||