Artificial intelligence support in MR imaging of incidental renal masses: an early health technology assessment

OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. - MATERIALS AND METHODS: For estimation of quality-adjusted life y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marka, Alexander Wolfgang (VerfasserIn) , Luitjens, Johanna (VerfasserIn) , Gassert, Florian T. (VerfasserIn) , Steinhelfer, Lisa (VerfasserIn) , Burian, Egon (VerfasserIn) , Rübenthaler, Johannes (VerfasserIn) , Schwarze, Vincent (VerfasserIn) , Froelich, Matthias F. (VerfasserIn) , Makowski, Marcus R. (VerfasserIn) , Gassert, Felix (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 February 2024
In: European radiology
Year: 2024, Jahrgang: 34, Heft: 9, Pages: 5856-5865
ISSN:1432-1084
DOI:10.1007/s00330-024-10643-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00330-024-10643-5
Volltext
Verfasserangaben:Alexander W. Marka, Johanna Luitjens, Florian T. Gassert, Lisa Steinhelfer, Egon Burian, Johannes Rübenthaler, Vincent Schwarze, Matthias F. Froelich, Marcus R. Makowski and Felix G. Gassert
Beschreibung
Zusammenfassung:OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. - MATERIALS AND METHODS: For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of
Beschreibung:Gesehen am 26.07.2024
Beschreibung:Online Resource
ISSN:1432-1084
DOI:10.1007/s00330-024-10643-5