Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma

Purpose: Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [18F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sachpekidis, Christos (VerfasserIn) , Enqvist, Olof (VerfasserIn) , Ulén, Johannes (VerfasserIn) , Kopp-Schneider, Annette (VerfasserIn) , Pan, Leyun (VerfasserIn) , Mai, Elias K. (VerfasserIn) , Hajiyianni, Marina (VerfasserIn) , Merz, Maximilian (VerfasserIn) , Raab, Marc-Steffen (VerfasserIn) , Jauch, Anna (VerfasserIn) , Goldschmidt, Hartmut (VerfasserIn) , Edenbrandt, Lars (VerfasserIn) , Dimitrakopoulou-Strauss, Antonia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 March 2024
In: European journal of nuclear medicine and molecular imaging
Year: 2024, Jahrgang: 51, Heft: 8, Pages: 2293-2307
ISSN:1619-7089
DOI:10.1007/s00259-024-06668-z
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00259-024-06668-z
Volltext
Verfasserangaben:Christos Sachpekidis, Olof Enqvist, Johannes Ulén, Annette Kopp-Schneider, Leyun Pan, Elias K. Mai, Marina Hajiyianni, Maximilian Merz, Marc S. Raab, Anna Jauch, Hartmut Goldschmidt, Lars Edenbrandt, Antonia Dimitrakopoulou-Strauss

MARC

LEADER 00000caa a2200000 c 4500
001 1897203128
003 DE-627
005 20241205155541.0
007 cr uuu---uuuuu
008 240731s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00259-024-06668-z  |2 doi 
035 |a (DE-627)1897203128 
035 |a (DE-599)KXP1897203128 
035 |a (OCoLC)1475305169 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Sachpekidis, Christos  |d 1983-  |e VerfasserIn  |0 (DE-588)1099707269  |0 (DE-627)858738651  |0 (DE-576)469338482  |4 aut 
245 1 0 |a Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma  |c Christos Sachpekidis, Olof Enqvist, Johannes Ulén, Annette Kopp-Schneider, Leyun Pan, Elias K. Mai, Marina Hajiyianni, Maximilian Merz, Marc S. Raab, Anna Jauch, Hartmut Goldschmidt, Lars Edenbrandt, Antonia Dimitrakopoulou-Strauss 
246 3 3 |a Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18 F)FDG PET/CT predicts survival in multiple myeloma 
264 1 |c 08 March 2024 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 31.07.2024 
500 |a Im Titel ist der Ausdruck "18F" eckig geklammert 
500 |a Im Titel ist die Zahl 18 hochgestellt 
520 |a Purpose: Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [18F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of automated, volumetric assessment of bone marrow (BM) metabolic activity on PET/CT using a novel artificial intelligence (AI)-based tool. Accordingly, the aim of the current study is to investigate the prognostic role of whole-body calculations of BM metabolism in patients with newly diagnosed MM using this AI tool. Materials and methods: Forty-four, previously untreated MM patients underwent whole-body [18F]FDG PET/CT. Automated PET/CT image segmentation and volumetric quantification of BM metabolism were based on an initial CT-based segmentation of the skeleton, its transfer to the standardized uptake value (SUV) PET images, subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, ten different uptake thresholds (AI approaches), based on reference organs or absolute SUV values, were applied for definition of pathological tracer uptake and subsequent calculation of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Correlation analysis was performed between the automated PET values and histopathological results of the BM as well as patients’ progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curve analysis was used to investigate the discrimination performance of MTV and TLG for prediction of 2-year PFS. The prognostic performance of the new Italian Myeloma criteria for PET Use (IMPeTUs) was also investigated. Results: Median follow-up [95% CI] of the patient cohort was 110 months [105-123 months]. AI-based BM segmentation and calculation of MTV and TLG were feasible in all patients. A significant, positive, moderate correlation was observed between the automated quantitative whole-body PET/CT parameters, MTV and TLG, and BM plasma cell infiltration for all ten [18F]FDG uptake thresholds. With regard to PFS, univariable analysis for both MTV and TLG predicted patient outcome reasonably well for all AI approaches. Adjusting for cytogenetic abnormalities and BM plasma cell infiltration rate, multivariable analysis also showed prognostic significance for high MTV, which defined pathological [18F]FDG uptake in the BM via the liver. In terms of OS, univariable and multivariable analysis showed that whole-body MTV, again mainly using liver uptake as reference, was significantly associated with shorter survival. In line with these findings, ROC curve analysis showed that MTV and TLG, assessed using liver-based cut-offs, could predict 2-year PFS rates. The application of IMPeTUs showed that the number of focal hypermetabolic BM lesions and extramedullary disease had an adverse effect on PFS. Conclusions: The AI-based, whole-body calculations of BM metabolism via the parameters MTV and TLG not only correlate with the degree of BM plasma cell infiltration, but also predict patient survival in MM. In particular, the parameter MTV, using the liver uptake as reference for BM segmentation, provides solid prognostic information for disease progression. In addition to highlighting the prognostic significance of automated, global volumetric estimation of metabolic tumor burden, these data open up new perspectives towards solving the complex problem of interpreting PET scans in MM with a simple, fast, and robust method that is not affected by operator-dependent interventions. 
650 4 |a Artificial intelligence 
650 4 |a Deep learning 
650 4 |a Metabolic tumor volume (MTV) 
650 4 |a Multiple myeloma 
650 4 |a Patient survival 
650 4 |a Prognosis 
650 4 |a Total lesion glycolysis (TLG) 
700 1 |a Enqvist, Olof  |e VerfasserIn  |4 aut 
700 1 |a Ulén, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Kopp-Schneider, Annette  |e VerfasserIn  |0 (DE-588)1119160545  |0 (DE-627)872460444  |0 (DE-576)178153206  |4 aut 
700 1 |a Pan, Leyun  |e VerfasserIn  |0 (DE-588)1119758858  |0 (DE-627)872860906  |0 (DE-576)479980624  |4 aut 
700 1 |a Mai, Elias K.  |d 1985-  |e VerfasserIn  |0 (DE-588)1049182545  |0 (DE-627)781300274  |0 (DE-576)403130999  |4 aut 
700 1 |a Hajiyianni, Marina  |e VerfasserIn  |0 (DE-588)1337479535  |0 (DE-627)1897203470  |4 aut 
700 1 |a Merz, Maximilian  |e VerfasserIn  |4 aut 
700 1 |a Raab, Marc-Steffen  |d 1973-  |e VerfasserIn  |0 (DE-588)124052460  |0 (DE-627)706520998  |0 (DE-576)293998027  |4 aut 
700 1 |a Jauch, Anna  |d 1959-  |e VerfasserIn  |0 (DE-588)1025525140  |0 (DE-627)722525362  |0 (DE-576)168357496  |4 aut 
700 1 |a Goldschmidt, Hartmut  |d 1956-  |e VerfasserIn  |0 (DE-588)102258023X  |0 (DE-627)717003809  |0 (DE-576)365637386  |4 aut 
700 1 |a Edenbrandt, Lars  |e VerfasserIn  |4 aut 
700 1 |a Dimitrakopoulou-Strauss, Antonia  |d 1963-  |e VerfasserIn  |0 (DE-588)1076688373  |0 (DE-627)835256901  |0 (DE-576)167486055  |4 aut 
773 0 8 |i Enthalten in  |t European journal of nuclear medicine and molecular imaging  |d Heidelberg [u.a.] : Springer-Verl., 2002  |g 51(2024), 8, Seite 2293-2307  |h Online-Ressource  |w (DE-627)359787258  |w (DE-600)2098375-X  |w (DE-576)110279549  |x 1619-7089  |7 nnas  |a Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma 
773 1 8 |g volume:51  |g year:2024  |g number:8  |g pages:2293-2307  |g extent:15  |a Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma 
856 4 0 |u https://doi.org/10.1007/s00259-024-06668-z  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240731 
993 |a Article 
994 |a 2024 
998 |g 1076688373  |a Dimitrakopoulou-Strauss, Antonia  |m 1076688373:Dimitrakopoulou-Strauss, Antonia  |d 50000  |e 50000PD1076688373  |k 0/50000/  |p 13  |y j 
998 |g 102258023X  |a Goldschmidt, Hartmut  |m 102258023X:Goldschmidt, Hartmut  |d 910000  |d 910100  |e 910000PG102258023X  |e 910100PG102258023X  |k 0/910000/  |k 1/910000/910100/  |p 11 
998 |g 1025525140  |a Jauch, Anna  |m 1025525140:Jauch, Anna  |d 910000  |d 911500  |d 50000  |e 910000PJ1025525140  |e 911500PJ1025525140  |e 50000PJ1025525140  |k 0/910000/  |k 1/910000/911500/  |k 0/50000/  |p 10 
998 |g 124052460  |a Raab, Marc-Steffen  |m 124052460:Raab, Marc-Steffen  |d 910000  |d 910100  |e 910000PR124052460  |e 910100PR124052460  |k 0/910000/  |k 1/910000/910100/  |p 9 
998 |g 1337479535  |a Hajiyianni, Marina  |m 1337479535:Hajiyianni, Marina  |d 910000  |d 910100  |e 910000PH1337479535  |e 910100PH1337479535  |k 0/910000/  |k 1/910000/910100/  |p 7 
998 |g 1049182545  |a Mai, Elias K.  |m 1049182545:Mai, Elias K.  |d 910000  |d 910100  |d 50000  |e 910000PM1049182545  |e 910100PM1049182545  |e 50000PM1049182545  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 6 
998 |g 1119758858  |a Pan, Leyun  |m 1119758858:Pan, Leyun  |d 50000  |e 50000PP1119758858  |k 0/50000/  |p 5 
998 |g 1119160545  |a Kopp-Schneider, Annette  |m 1119160545:Kopp-Schneider, Annette  |d 50000  |e 50000PK1119160545  |k 0/50000/  |p 4 
998 |g 1099707269  |a Sachpekidis, Christos  |m 1099707269:Sachpekidis, Christos  |d 910000  |d 910100  |d 50000  |e 910000PS1099707269  |e 910100PS1099707269  |e 50000PS1099707269  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1897203128  |e 4561135049 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"titleAlt":[{"title":"Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18 F)FDG PET/CT predicts survival in multiple myeloma"}],"person":[{"family":"Sachpekidis","display":"Sachpekidis, Christos","role":"aut","given":"Christos"},{"display":"Enqvist, Olof","family":"Enqvist","role":"aut","given":"Olof"},{"role":"aut","given":"Johannes","family":"Ulén","display":"Ulén, Johannes"},{"given":"Annette","role":"aut","family":"Kopp-Schneider","display":"Kopp-Schneider, Annette"},{"given":"Leyun","role":"aut","display":"Pan, Leyun","family":"Pan"},{"family":"Mai","display":"Mai, Elias K.","role":"aut","given":"Elias K."},{"role":"aut","given":"Marina","display":"Hajiyianni, Marina","family":"Hajiyianni"},{"family":"Merz","display":"Merz, Maximilian","given":"Maximilian","role":"aut"},{"display":"Raab, Marc-Steffen","family":"Raab","given":"Marc-Steffen","role":"aut"},{"family":"Jauch","display":"Jauch, Anna","role":"aut","given":"Anna"},{"role":"aut","given":"Hartmut","display":"Goldschmidt, Hartmut","family":"Goldschmidt"},{"given":"Lars","role":"aut","display":"Edenbrandt, Lars","family":"Edenbrandt"},{"family":"Dimitrakopoulou-Strauss","display":"Dimitrakopoulou-Strauss, Antonia","given":"Antonia","role":"aut"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myelomaEuropean journal of nuclear medicine and molecular imaging","note":["Gesehen am 13.02.2023","Ungezählte Beil.: Supplement"],"origin":[{"publisherPlace":"Heidelberg [u.a.]","publisher":"Springer-Verl.","dateIssuedKey":"2002","dateIssuedDisp":"2002-"}],"pubHistory":["29.2002 -"],"title":[{"subtitle":"official journal of the European Association of Nuclear Medicine (EANM)","title_sort":"European journal of nuclear medicine and molecular imaging","title":"European journal of nuclear medicine and molecular imaging"}],"id":{"eki":["359787258"],"issn":["1619-7089"],"zdb":["2098375-X"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"359787258","part":{"pages":"2293-2307","year":"2024","text":"51(2024), 8, Seite 2293-2307","issue":"8","volume":"51","extent":"15"},"language":["eng"]}],"recId":"1897203128","name":{"displayForm":["Christos Sachpekidis, Olof Enqvist, Johannes Ulén, Annette Kopp-Schneider, Leyun Pan, Elias K. Mai, Marina Hajiyianni, Maximilian Merz, Marc S. Raab, Anna Jauch, Hartmut Goldschmidt, Lars Edenbrandt, Antonia Dimitrakopoulou-Strauss"]},"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1007/s00259-024-06668-z"],"eki":["1897203128"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"08 March 2024"}],"note":["Gesehen am 31.07.2024","Im Titel ist der Ausdruck \"18F\" eckig geklammert","Im Titel ist die Zahl 18 hochgestellt"],"title":[{"title_sort":"Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma","title":"Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in (18F)FDG PET/CT predicts survival in multiple myeloma"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a SACHPEKIDIARTIFICIAL0820