Deep learning with simulated laser scanning data for 3D point cloud classification

Laser scanning is an active remote sensing technique applied in many disciplines to acquire state-of-the-art spatial measurements. Semantic labeling is often necessary to extract information from the raw point cloud. Deep learning methods constitute a data-hungry solution for the semantic segmentati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Esmorís Pena, Alberto M. (VerfasserIn) , Weiser, Hannah (VerfasserIn) , Winiwarter, Lukas (VerfasserIn) , Cabaleiro, Jose C. (VerfasserIn) , Höfle, Bernhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 July 2024
In: ISPRS open journal of photogrammetry and remote sensing
Year: 2024, Jahrgang: 215, Pages: 192-213
ISSN:2667-3932
DOI:10.1016/j.isprsjprs.2024.06.018
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.isprsjprs.2024.06.018
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0924271624002569
Volltext
Verfasserangaben:Alberto M. Esmorís, Hannah Weiser, Lukas Winiwarter, Jose C. Cabaleiro, Bernhard Höfle

MARC

LEADER 00000caa a2200000 c 4500
001 1898336628
003 DE-627
005 20250120120018.0
007 cr uuu---uuuuu
008 240809s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isprsjprs.2024.06.018  |2 doi 
035 |a (DE-627)1898336628 
035 |a (DE-599)KXP1898336628 
035 |a (OCoLC)1475307105 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Esmorís Pena, Alberto M.  |d 1993-  |e VerfasserIn  |0 (DE-588)1325863661  |0 (DE-627)1885623674  |4 aut 
245 1 0 |a Deep learning with simulated laser scanning data for 3D point cloud classification  |c Alberto M. Esmorís, Hannah Weiser, Lukas Winiwarter, Jose C. Cabaleiro, Bernhard Höfle 
264 1 |c 13 July 2024 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.08.2024 
520 |a Laser scanning is an active remote sensing technique applied in many disciplines to acquire state-of-the-art spatial measurements. Semantic labeling is often necessary to extract information from the raw point cloud. Deep learning methods constitute a data-hungry solution for the semantic segmentation of point clouds. In this work, we investigate the use of simulated laser scanning for training deep learning models, which are applied to real data subsequently. We show that training a deep learning model purely on virtual laser scanning data can produce results comparable to models trained on real data when evaluated on real data. For leaf-wood segmentation of trees, using the KPConv model trained with virtual data achieves 93.7% overall accuracy, while the model trained on real data reaches 94.7% overall accuracy. In urban contexts, a KPConv model trained on virtual data achieves 74.1% overall accuracy on real validation data, while the model trained on real data achieves 82.4%. Our models outperform the state-of-the-art model FSCT in terms of generalization to unseen real data as well as a baseline model trained on points randomly sampled from the tree mesh surface. From our results, we conclude that the combination of laser scanning simulation and deep learning is a cost-effective alternative to real data acquisition and manual labeling in the domain of geospatial point cloud analysis. The strengths of this approach are that (a) a large amount of diverse laser scanning training data can be generated quickly and without the need for expensive equipment, (b) the simulation configurations can be adapted so that the virtual training data have similar characteristics to the targeted real data, and (c) the whole workflow can be automated through procedural scene generation. 
650 4 |a Leaf-wood segmentation 
650 4 |a LiDAR simulation 
650 4 |a Machine learning 
650 4 |a Point clouds 
650 4 |a Point-wise classification 
650 4 |a Virtual laser scanning 
700 1 |a Weiser, Hannah  |e VerfasserIn  |0 (DE-588)1244932566  |0 (DE-627)1776004736  |4 aut 
700 1 |a Winiwarter, Lukas  |d 1994-  |e VerfasserIn  |0 (DE-588)1198882808  |0 (DE-627)1681036118  |4 aut 
700 1 |a Cabaleiro, Jose C.  |e VerfasserIn  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
773 0 8 |i Enthalten in  |t ISPRS open journal of photogrammetry and remote sensing  |d Amsterdam : Elsevier, 2021  |g 215(2024), Seite 192-213  |h Online-Ressource  |w (DE-627)1786048418  |w (DE-600)3106021-3  |x 2667-3932  |7 nnas  |a Deep learning with simulated laser scanning data for 3D point cloud classification 
773 1 8 |g volume:215  |g year:2024  |g pages:192-213  |g extent:22  |a Deep learning with simulated laser scanning data for 3D point cloud classification 
856 4 0 |u https://doi.org/10.1016/j.isprsjprs.2024.06.018  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0924271624002569  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240809 
993 |a Article 
994 |a 2024 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 5 
998 |g 1198882808  |a Winiwarter, Lukas  |m 1198882808:Winiwarter, Lukas  |p 3 
998 |g 1244932566  |a Weiser, Hannah  |m 1244932566:Weiser, Hannah  |d 120000  |d 120700  |e 120000PW1244932566  |e 120700PW1244932566  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1325863661  |a Esmorís Pena, Alberto M.  |m 1325863661:Esmorís Pena, Alberto M.  |d 120000  |d 120700  |e 120000PE1325863661  |e 120700PE1325863661  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j  |y j 
999 |a KXP-PPN1898336628  |e 4564545426 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 09.08.2024"],"recId":"1898336628","name":{"displayForm":["Alberto M. Esmorís, Hannah Weiser, Lukas Winiwarter, Jose C. Cabaleiro, Bernhard Höfle"]},"relHost":[{"corporate":[{"display":"International Society for Photogrammetry and Remote Sensing","role":"isb"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"eki":["1786048418"],"zdb":["3106021-3"],"issn":["2667-3932"]},"language":["eng"],"part":{"pages":"192-213","text":"215(2024), Seite 192-213","volume":"215","year":"2024","extent":"22"},"titleAlt":[{"title":"IOJPRS"}],"title":[{"title":"ISPRS open journal of photogrammetry and remote sensing","subtitle":"IOJPRS","title_sort":"ISPRS open journal of photogrammetry and remote sensing"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"[2021]-","publisherPlace":"Amsterdam","publisher":"Elsevier"}],"recId":"1786048418","pubHistory":["Volume 1 (October 2021)-"],"name":{"displayForm":["International Society for Photogrammetry and Remote Sensing"]},"disp":"Deep learning with simulated laser scanning data for 3D point cloud classificationISPRS open journal of photogrammetry and remote sensing"}],"physDesc":[{"extent":"22 S."}],"person":[{"given":"Alberto M.","family":"Esmorís Pena","display":"Esmorís Pena, Alberto M.","role":"aut"},{"given":"Hannah","display":"Weiser, Hannah","family":"Weiser","role":"aut"},{"role":"aut","given":"Lukas","display":"Winiwarter, Lukas","family":"Winiwarter"},{"given":"Jose C.","display":"Cabaleiro, Jose C.","family":"Cabaleiro","role":"aut"},{"role":"aut","given":"Bernhard","family":"Höfle","display":"Höfle, Bernhard"}],"title":[{"title_sort":"Deep learning with simulated laser scanning data for 3D point cloud classification","title":"Deep learning with simulated laser scanning data for 3D point cloud classification"}],"origin":[{"dateIssuedDisp":"13 July 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1016/j.isprsjprs.2024.06.018"],"eki":["1898336628"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a ESMORISPENDEEPLEARNI1320