In situ mass spectrometric and kinetic investigations of Soai's asymmetric autocatalysis

Chemical reactions that lead to a spontaneous symmetry breaking or amplification of the enantiomeric excess are of fundamental interest in explaining the formation of a homochiral world. An outstanding example is Soai's asymmetric autocatalysis, in which small enantiomeric excesses of the added...

Full description

Saved in:
Bibliographic Details
Main Authors: Trapp, Oliver (Author) , Lamour, Saskia (Author) , Maier, Frank (Author) , Siegle, Alexander F. (Author) , Zawatzky, Kerstin (Author) , Straub, Bernd Franz (Author)
Format: Article (Journal)
Language:English
Published: 2020
In: Chemistry - a European journal
Year: 2020, Volume: 26, Issue: 68, Pages: 15871-15880
ISSN:1521-3765
DOI:10.1002/chem.202003260
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/chem.202003260
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202003260
Get full text
Author Notes:Oliver Trapp, Saskia Lamour, Frank Maier, Alexander F. Siegle, Kerstin Zawatzky, and Bernd F. Straub
Description
Summary:Chemical reactions that lead to a spontaneous symmetry breaking or amplification of the enantiomeric excess are of fundamental interest in explaining the formation of a homochiral world. An outstanding example is Soai's asymmetric autocatalysis, in which small enantiomeric excesses of the added product alcohol are amplified in the reaction of diisopropylzinc and pyrimidine-5-carbaldehydes. The exact mechanism is still in dispute due to complex reaction equilibria and elusive intermediates. In situ high-resolution mass spectrometric measurements, detailed kinetic analyses and doping with in situ reacting reaction mixtures show the transient formation of hemiacetal complexes, which can establish an autocatalytic cycle. We propose a mechanism that explains the autocatalytic amplification involving these hemiacetal complexes. Comprehensive kinetic experiments and modelling of the hemiacetal formation and the Soai reaction allow the precise prediction of the reaction progress, the enantiomeric excess as well as the enantiomeric excess dependent time shift in the induction period. Experimental structural data give insights into the privileged properties of the pyrimidyl units and the formation of diastereomeric structures leading to an efficient amplification of even minimal enantiomeric excesses, respectively.
Item Description:Gesehen am 09.09.2024
Physical Description:Online Resource
ISSN:1521-3765
DOI:10.1002/chem.202003260