Regression-based Deep-Learning predicts molecular biomarkers from pathology slides

Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements. We hypothesize that regression-based DL outperforms classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: El Nahhas, Omar S. M. (VerfasserIn) , Loeffler, Chiara M. L. (VerfasserIn) , Carrero, Zunamys I. (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Kolbinger, Fiona (VerfasserIn) , Hewitt, Katherine J. (VerfasserIn) , Muti, Hannah S. (VerfasserIn) , Graziani, Mara (VerfasserIn) , Zeng, Qinghe (VerfasserIn) , Calderaro, Julien (VerfasserIn) , Ortiz-Brüchle, Nadina (VerfasserIn) , Yuan, Tanwei (VerfasserIn) , Hoffmeister, Michael (VerfasserIn) , Brenner, Hermann (VerfasserIn) , Brobeil, Alexander (VerfasserIn) , Reis-Filho, Jorge S. (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 February 2024
In: Nature Communications
Year: 2024, Jahrgang: 15, Pages: 1-13
ISSN:2041-1723
DOI:10.1038/s41467-024-45589-1
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-024-45589-1
Volltext
Verfasserangaben:Omar S.M. El Nahhas, Chiara M.L. Loeffler, Zunamys I. Carrero, Marko van Treeck, Fiona R. Kolbinger, Katherine J. Hewitt, Hannah S. Muti, Mara Graziani, Qinghe Zeng, Julien Calderaro, Nadina Ortiz-Brüchle, Tanwei Yuan, Michael Hoffmeister, Hermann Brenner, Alexander Brobeil, Jorge S. Reis-Filho & Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1902533437
003 DE-627
005 20250626105125.0
007 cr uuu---uuuuu
008 240913s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41467-024-45589-1  |2 doi 
035 |a (DE-627)1902533437 
035 |a (DE-599)KXP1902533437 
035 |a (OCoLC)1475311741 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a El Nahhas, Omar S. M.  |e VerfasserIn  |0 (DE-588)1341939367  |0 (DE-627)190253512X  |4 aut 
245 1 0 |a Regression-based Deep-Learning predicts molecular biomarkers from pathology slides  |c Omar S.M. El Nahhas, Chiara M.L. Loeffler, Zunamys I. Carrero, Marko van Treeck, Fiona R. Kolbinger, Katherine J. Hewitt, Hannah S. Muti, Mara Graziani, Qinghe Zeng, Julien Calderaro, Nadina Ortiz-Brüchle, Tanwei Yuan, Michael Hoffmeister, Hermann Brenner, Alexander Brobeil, Jorge S. Reis-Filho & Jakob Nikolas Kather 
264 1 |c 10 February 2024 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.09.2024 
520 |a Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements. We hypothesize that regression-based DL outperforms classification-based DL. Therefore, we develop and evaluate a self-supervised attention-based weakly supervised regression method that predicts continuous biomarkers directly from 11,671 images of patients across nine cancer types. We test our method for multiple clinically and biologically relevant biomarkers: homologous recombination deficiency score, a clinically used pan-cancer biomarker, as well as markers of key biological processes in the tumor microenvironment. Using regression significantly enhances the accuracy of biomarker prediction, while also improving the predictions' correspondence to regions of known clinical relevance over classification. In a large cohort of colorectal cancer patients, regression-based prediction scores provide a higher prognostic value than classification-based scores. Our open-source regression approach offers a promising alternative for continuous biomarker analysis in computational pathology. 
650 4 |a Biomarkers, Tumor 
650 4 |a Deep Learning 
650 4 |a Humans 
650 4 |a Neoplasms 
650 4 |a Technology 
650 4 |a Tumor Microenvironment 
700 1 |a Loeffler, Chiara M. L.  |e VerfasserIn  |4 aut 
700 1 |a Carrero, Zunamys I.  |e VerfasserIn  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Kolbinger, Fiona  |e VerfasserIn  |0 (DE-588)1201382440  |0 (DE-627)168495651X  |4 aut 
700 1 |a Hewitt, Katherine J.  |e VerfasserIn  |4 aut 
700 1 |a Muti, Hannah S.  |e VerfasserIn  |4 aut 
700 1 |a Graziani, Mara  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Zeng, Qinghe  |e VerfasserIn  |0 (DE-588)1268840033  |0 (DE-627)1817370928  |4 aut 
700 1 |a Calderaro, Julien  |e VerfasserIn  |4 aut 
700 1 |a Ortiz-Brüchle, Nadina  |e VerfasserIn  |4 aut 
700 1 |a Yuan, Tanwei  |d 1995-  |e VerfasserIn  |0 (DE-588)1299871909  |0 (DE-627)1857588649  |4 aut 
700 1 |a Hoffmeister, Michael  |d 1973-  |e VerfasserIn  |0 (DE-588)134103726  |0 (DE-627)560880820  |0 (DE-576)277089565  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Brobeil, Alexander  |e VerfasserIn  |0 (DE-588)108137795X  |0 (DE-627)846032406  |0 (DE-576)454349661  |4 aut 
700 1 |a Reis-Filho, Jorge S.  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Nature Communications  |d [London] : Springer Nature, 2010  |g 15(2024), Artikel-ID 1253, Seite 1-13  |h Online-Ressource  |w (DE-627)626457688  |w (DE-600)2553671-0  |w (DE-576)331555905  |x 2041-1723  |7 nnas  |a Regression-based Deep-Learning predicts molecular biomarkers from pathology slides 
773 1 8 |g volume:15  |g year:2024  |g elocationid:1253  |g pages:1-13  |g extent:13  |a Regression-based Deep-Learning predicts molecular biomarkers from pathology slides 
856 4 0 |u https://doi.org/10.1038/s41467-024-45589-1  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20240913 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 17  |y j 
998 |g 108137795X  |a Brobeil, Alexander  |m 108137795X:Brobeil, Alexander  |d 910000  |d 912000  |e 910000PB108137795X  |e 912000PB108137795X  |k 0/910000/  |k 1/910000/912000/  |p 15 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 14 
998 |g 134103726  |a Hoffmeister, Michael  |m 134103726:Hoffmeister, Michael  |d 50000  |e 50000PH134103726  |k 0/50000/  |p 13 
998 |g 1299871909  |a Yuan, Tanwei  |m 1299871909:Yuan, Tanwei  |d 50000  |e 50000PY1299871909  |k 0/50000/  |p 12 
999 |a KXP-PPN1902533437  |e 457943644X 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"recId":"1902533437","relHost":[{"recId":"626457688","physDesc":[{"extent":"Online-Ressource"}],"disp":"Regression-based Deep-Learning predicts molecular biomarkers from pathology slidesNature Communications","origin":[{"publisherPlace":"[London] ; [London]","dateIssuedDisp":"[2010]-","publisher":"Springer Nature ; Nature Publishing Group UK"}],"pubHistory":["2010-"],"id":{"eki":["626457688"],"issn":["2041-1723"],"zdb":["2553671-0"]},"part":{"year":"2024","pages":"1-13","extent":"13","text":"15(2024), Artikel-ID 1253, Seite 1-13","volume":"15"},"title":[{"title":"Nature Communications","title_sort":"Nature Communications"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 13.06.24"]}],"person":[{"display":"El Nahhas, Omar S. M.","family":"El Nahhas","given":"Omar S. M.","role":"aut"},{"family":"Loeffler","role":"aut","given":"Chiara M. L.","display":"Loeffler, Chiara M. L."},{"display":"Carrero, Zunamys I.","given":"Zunamys I.","role":"aut","family":"Carrero"},{"display":"van Treeck, Marko","family":"van Treeck","given":"Marko","role":"aut"},{"family":"Kolbinger","role":"aut","given":"Fiona","display":"Kolbinger, Fiona"},{"role":"aut","given":"Katherine J.","family":"Hewitt","display":"Hewitt, Katherine J."},{"display":"Muti, Hannah S.","family":"Muti","role":"aut","given":"Hannah S."},{"given":"Mara","role":"aut","family":"Graziani","display":"Graziani, Mara"},{"family":"Zeng","role":"aut","given":"Qinghe","display":"Zeng, Qinghe"},{"family":"Calderaro","given":"Julien","role":"aut","display":"Calderaro, Julien"},{"display":"Ortiz-Brüchle, Nadina","family":"Ortiz-Brüchle","role":"aut","given":"Nadina"},{"family":"Yuan","role":"aut","given":"Tanwei","display":"Yuan, Tanwei"},{"given":"Michael","role":"aut","family":"Hoffmeister","display":"Hoffmeister, Michael"},{"display":"Brenner, Hermann","family":"Brenner","role":"aut","given":"Hermann"},{"display":"Brobeil, Alexander","role":"aut","given":"Alexander","family":"Brobeil"},{"display":"Reis-Filho, Jorge S.","role":"aut","given":"Jorge S.","family":"Reis-Filho"},{"family":"Kather","given":"Jakob Nikolas","role":"aut","display":"Kather, Jakob Nikolas"}],"origin":[{"dateIssuedDisp":"10 February 2024","dateIssuedKey":"2024"}],"note":["Gesehen am 13.09.2024"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Regression-based Deep-Learning predicts molecular biomarkers from pathology slides","title":"Regression-based Deep-Learning predicts molecular biomarkers from pathology slides"}],"name":{"displayForm":["Omar S.M. El Nahhas, Chiara M.L. Loeffler, Zunamys I. Carrero, Marko van Treeck, Fiona R. Kolbinger, Katherine J. Hewitt, Hannah S. Muti, Mara Graziani, Qinghe Zeng, Julien Calderaro, Nadina Ortiz-Brüchle, Tanwei Yuan, Michael Hoffmeister, Hermann Brenner, Alexander Brobeil, Jorge S. Reis-Filho & Jakob Nikolas Kather"]},"id":{"doi":["10.1038/s41467-024-45589-1"],"eki":["1902533437"]}} 
SRT |a ELNAHHASOMREGRESSION1020