On motivic and arithmetic refinements of Donaldson-Thomas invariants

In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other "refined invariants", and especially...

Full description

Saved in:
Bibliographic Details
Main Authors: Espreafico, Felipe (Author) , Walcher, Johannes (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 27 Jul 2023
Edition:Version V2
In: Arxiv
Year: 2023, Pages: 1-16
DOI:10.48550/arXiv.2307.03655
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2307.03655
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2307.03655
Get full text
Author Notes:Felipe Espreafico and Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 190257379X
003 DE-627
005 20241205172107.0
007 cr uuu---uuuuu
008 240916s2023 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2307.03655  |2 doi 
035 |a (DE-627)190257379X 
035 |a (DE-599)KXP190257379X 
035 |a (OCoLC)1475311859 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Espreafico, Felipe  |e VerfasserIn  |0 (DE-588)1342124448  |0 (DE-627)1902574087  |4 aut 
245 1 0 |a On motivic and arithmetic refinements of Donaldson-Thomas invariants  |c Felipe Espreafico and Johannes Walcher 
250 |a Version V2 
264 1 |c 27 Jul 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.09.2024 
520 |a In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other "refined invariants", and especially their possible interpretation in quantum theory, we explain how to obtain a quadratic version of Donaldson-Thomas invariants from the motivic invariants defined in the work of Kontsevich and Soibelman and pose some questions. We calculate these invariants in a few simple examples that provide standard tests for these questions, including degree zero invariants of $\mathbb A^3$ and higher-genus Gopakumar-Vafa invariants recently studied by Liu and Ruan. The comparison with known real and complex counts plays a central role throughout. 
650 4 |a 14N35, 81T30 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematics - Algebraic Geometry 
700 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2023) vom: Juli, Artikel-ID 2307.03655, Seite 1-16  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a On motivic and arithmetic refinements of Donaldson-Thomas invariants 
773 1 8 |g year:2023  |g month:07  |g elocationid:2307.03655  |g pages:1-16  |g extent:16  |a On motivic and arithmetic refinements of Donaldson-Thomas invariants 
856 4 0 |u https://doi.org/10.48550/arXiv.2307.03655  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2307.03655  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240916 
993 |a Article 
994 |a 2023 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |d 110000  |d 110400  |e 110000PW1089078978  |e 110400PW1089078978  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN190257379X  |e 4580230191 
BIB |a Y 
JSO |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Espreafico, Felipe","given":"Felipe","family":"Espreafico"},{"family":"Walcher","given":"Johannes","display":"Walcher, Johannes","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"On motivic and arithmetic refinements of Donaldson-Thomas invariants","title":"On motivic and arithmetic refinements of Donaldson-Thomas invariants"}],"language":["eng"],"recId":"190257379X","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 16.09.2024"],"name":{"displayForm":["Felipe Espreafico and Johannes Walcher"]},"id":{"eki":["190257379X"],"doi":["10.48550/arXiv.2307.03655"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"27 Jul 2023","edition":"Version V2"}],"relHost":[{"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"On motivic and arithmetic refinements of Donaldson-Thomas invariantsArxiv","note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"extent":"16","text":"(2023) vom: Juli, Artikel-ID 2307.03655, Seite 1-16","pages":"1-16","year":"2023"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"16 S."}]} 
SRT |a ESPREAFICOONMOTIVICA2720