On motivic and arithmetic refinements of Donaldson-Thomas invariants
In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other "refined invariants", and especially...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
27 Jul 2023
|
| Edition: | Version V2 |
| In: |
Arxiv
Year: 2023, Pages: 1-16 |
| DOI: | 10.48550/arXiv.2307.03655 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2307.03655 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2307.03655 |
| Author Notes: | Felipe Espreafico and Johannes Walcher |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 190257379X | ||
| 003 | DE-627 | ||
| 005 | 20241205172107.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240916s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2307.03655 |2 doi | |
| 035 | |a (DE-627)190257379X | ||
| 035 | |a (DE-599)KXP190257379X | ||
| 035 | |a (OCoLC)1475311859 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Espreafico, Felipe |e VerfasserIn |0 (DE-588)1342124448 |0 (DE-627)1902574087 |4 aut | |
| 245 | 1 | 0 | |a On motivic and arithmetic refinements of Donaldson-Thomas invariants |c Felipe Espreafico and Johannes Walcher |
| 250 | |a Version V2 | ||
| 264 | 1 | |c 27 Jul 2023 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.09.2024 | ||
| 520 | |a In recent years, a version of enumerative geometry over arbitrary fields has been developed and studied by Kass-Wickelgren, Levine, and others, in which the counts obtained are not integers but quadratic forms. Aiming to understand the relation to other "refined invariants", and especially their possible interpretation in quantum theory, we explain how to obtain a quadratic version of Donaldson-Thomas invariants from the motivic invariants defined in the work of Kontsevich and Soibelman and pose some questions. We calculate these invariants in a few simple examples that provide standard tests for these questions, including degree zero invariants of $\mathbb A^3$ and higher-genus Gopakumar-Vafa invariants recently studied by Liu and Ruan. The comparison with known real and complex counts plays a central role throughout. | ||
| 650 | 4 | |a 14N35, 81T30 | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematics - Algebraic Geometry | |
| 700 | 1 | |a Walcher, Johannes |d 1973- |e VerfasserIn |0 (DE-588)1089078978 |0 (DE-627)85098114X |0 (DE-576)459955098 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2023) vom: Juli, Artikel-ID 2307.03655, Seite 1-16 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On motivic and arithmetic refinements of Donaldson-Thomas invariants |
| 773 | 1 | 8 | |g year:2023 |g month:07 |g elocationid:2307.03655 |g pages:1-16 |g extent:16 |a On motivic and arithmetic refinements of Donaldson-Thomas invariants |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2307.03655 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2307.03655 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240916 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1089078978 |a Walcher, Johannes |m 1089078978:Walcher, Johannes |d 110000 |d 110400 |e 110000PW1089078978 |e 110400PW1089078978 |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 999 | |a KXP-PPN190257379X |e 4580230191 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Espreafico, Felipe","given":"Felipe","family":"Espreafico"},{"family":"Walcher","given":"Johannes","display":"Walcher, Johannes","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"On motivic and arithmetic refinements of Donaldson-Thomas invariants","title":"On motivic and arithmetic refinements of Donaldson-Thomas invariants"}],"language":["eng"],"recId":"190257379X","type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 16.09.2024"],"name":{"displayForm":["Felipe Espreafico and Johannes Walcher"]},"id":{"eki":["190257379X"],"doi":["10.48550/arXiv.2307.03655"]},"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"27 Jul 2023","edition":"Version V2"}],"relHost":[{"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"On motivic and arithmetic refinements of Donaldson-Thomas invariantsArxiv","note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"extent":"16","text":"(2023) vom: Juli, Artikel-ID 2307.03655, Seite 1-16","pages":"1-16","year":"2023"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"16 S."}]} | ||
| SRT | |a ESPREAFICOONMOTIVICA2720 | ||