Adinkras and pure spinors

The nilpotence variety for extended supersymmetric quantum mechanics is a cone over a quadric in projective space. The pure spinor correspondence, which relates the description of off-shell supermultiplets to the classification of modules over the corresponding hypersurface ring, reduces to a classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eager, Richard (VerfasserIn) , Noja, Simone (VerfasserIn) , Senghaas, Raphael (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 4 Sep 2024
Ausgabe:Version v2
In: Arxiv
Year: 2024, Pages: 1-91
DOI:10.48550/arXiv.2404.07167
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2404.07167
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2404.07167
Volltext
Verfasserangaben:Richard Eager, Simone Noja, Raphael Senghaas, Johannes Walcher
Beschreibung
Zusammenfassung:The nilpotence variety for extended supersymmetric quantum mechanics is a cone over a quadric in projective space. The pure spinor correspondence, which relates the description of off-shell supermultiplets to the classification of modules over the corresponding hypersurface ring, reduces to a classical problem of linear algebra. Spinor bundles, which correspond to maximal Cohen-Macaulay modules, serve as basic building blocks. Koszul duality appears as a deformed version of the Bernstein-Gel'fand-Gel'fand correspondence that we make fully concrete. We illustrate in numerous examples the close relationship between these connections and the powerful graphical technology of Adinkras, which appear as a decategorification of special complexes on quadrics. We emphasize the role of R-symmetry for recovering higher-dimensional gauge and gravity multiplets.
Beschreibung:Gesehen am 16.09.2024
Beschreibung:Online Resource
DOI:10.48550/arXiv.2404.07167