Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags

Automated methods for building function classification are essential due to restricted access to official building use data. Existing approaches utilize traditional Natural Language Processing (NLP) techniques to analyze textual data representing human activities, but they struggle with the ambiguit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Memduhoğlu, Abdulkadir (VerfasserIn) , Fulman, Nir (VerfasserIn) , Zipf, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 August 2024
In: Earth science informatics
Year: 2024, Jahrgang: 17, Heft: 6, Pages: 5403-5418
ISSN:1865-0481
DOI:10.1007/s12145-024-01463-8
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s12145-024-01463-8
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s12145-024-01463-8
Volltext
Verfasserangaben:Abdulkadir Memduhoğlu, Nir Fulman, Alexander Zipf

MARC

LEADER 00000caa a2200000 c 4500
001 190304832X
003 DE-627
005 20250623115614.0
007 cr uuu---uuuuu
008 240920s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s12145-024-01463-8  |2 doi 
035 |a (DE-627)190304832X 
035 |a (DE-599)KXP190304832X 
035 |a (OCoLC)1475312416 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
100 1 |a Memduhoğlu, Abdulkadir  |e VerfasserIn  |0 (DE-588)1342530799  |0 (DE-627)1903048877  |4 aut 
245 1 0 |a Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags  |c Abdulkadir Memduhoğlu, Nir Fulman, Alexander Zipf 
264 1 |c 27 August 2024 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.09.2024 
520 |a Automated methods for building function classification are essential due to restricted access to official building use data. Existing approaches utilize traditional Natural Language Processing (NLP) techniques to analyze textual data representing human activities, but they struggle with the ambiguity of semantic contexts. In contrast, Large Language Models (LLMs) excel at capturing the broader context of language. This study presents a method that uses LLMs to interpret OpenStreetMap (OSM) tags, combining them with physical and spatial metrics to classify urban building functions. We employed an XGBoost model trained on 32 features from six city datasets to classify urban building functions, demonstrating varying F1 scores from 67.80% in Madrid to 91.59% in Liberec. Integrating LLM embeddings enhanced the model's performance by an average of 12.5% across all cities compared to models using only physical and spatial metrics. Moreover, integrating LLM embeddings improved the model's performance by 6.2% over models that incorporate OSM tags as one-hot encodings, and when predicting based solely on OSM tags, the LLM approach outperforms traditional NLP methods in 5 out of 6 cities. These results suggest that deep contextual understanding, as captured by LLM embeddings more effectively than traditional NLP approaches, is beneficial for classification. Finally, a Pearson correlation coefficient of approximately -0.858 between population density and F1-scores suggests that denser areas present greater classification challenges. Moving forward, we recommend investigation into discrepancies in model performance across and within cities, aiming to identify generalized models. 
650 4 |a Artificial Intelligence 
650 4 |a Building functions classification 
650 4 |a Large language models 
650 4 |a Natural language processing 
650 4 |a OpenStreetMap 
650 4 |a Text embedding 
700 1 |a Fulman, Nir  |e VerfasserIn  |0 (DE-588)1317779584  |0 (DE-627)1879624907  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |t Earth science informatics  |d Berlin : Springer, 2008  |g 17(2024), 6, Seite 5403-5418  |h Online-Ressource  |w (DE-627)565515772  |w (DE-600)2423990-2  |w (DE-576)306836270  |x 1865-0481  |7 nnas  |a Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags 
773 1 8 |g volume:17  |g year:2024  |g number:6  |g pages:5403-5418  |g extent:16  |a Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags 
856 4 0 |u https://doi.org/10.1007/s12145-024-01463-8  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s12145-024-01463-8  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240920 
993 |a Article 
994 |a 2024 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 3  |y j 
998 |g 1317779584  |a Fulman, Nir  |m 1317779584:Fulman, Nir  |d 120000  |d 120700  |e 120000PF1317779584  |e 120700PF1317779584  |k 0/120000/  |k 1/120000/120700/  |p 2 
998 |g 1342530799  |a Memduhoğlu, Abdulkadir  |m 1342530799:Memduhoğlu, Abdulkadir  |d 120000  |d 120700  |e 120000PM1342530799  |e 120700PM1342530799  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN190304832X  |e 4581904110 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags","title":"Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags"}],"name":{"displayForm":["Abdulkadir Memduhoğlu, Nir Fulman, Alexander Zipf"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"given":"Abdulkadir","role":"aut","display":"Memduhoğlu, Abdulkadir","family":"Memduhoğlu"},{"role":"aut","display":"Fulman, Nir","family":"Fulman","given":"Nir"},{"given":"Alexander","display":"Zipf, Alexander","role":"aut","family":"Zipf"}],"id":{"eki":["190304832X"],"doi":["10.1007/s12145-024-01463-8"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"27 August 2024"}],"language":["eng"],"note":["Gesehen am 20.09.2024"],"recId":"190304832X","physDesc":[{"extent":"16 S."}],"relHost":[{"id":{"zdb":["2423990-2"],"eki":["565515772"],"issn":["1865-0481"]},"part":{"issue":"6","extent":"16","volume":"17","year":"2024","text":"17(2024), 6, Seite 5403-5418","pages":"5403-5418"},"origin":[{"publisher":"Springer","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"2008","dateIssuedDisp":"2008-"}],"disp":"Enriching building function classification using Large Language Model embeddings of OpenStreetMap TagsEarth science informatics","title":[{"title":"Earth science informatics","title_sort":"Earth science informatics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"recId":"565515772","pubHistory":["1.2008 -"],"language":["eng"]}]} 
SRT |a MEMDUHOGLUENRICHINGB2720