Interpretable machine learning for finding intermediate-mass black holes

Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pasquato, Mario (VerfasserIn) , Trevisan, Piero (VerfasserIn) , Askar, Abbas (VerfasserIn) , Lemos, Pablo (VerfasserIn) , Carenini, Gaia (VerfasserIn) , Mapelli, Michela (VerfasserIn) , Hezaveh, Yashar (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2024 April 10
In: The astrophysical journal
Year: 2024, Jahrgang: 965, Heft: 1, Pages: 1-15
ISSN:1538-4357
DOI:10.3847/1538-4357/ad2261
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3847/1538-4357/ad2261
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.3847%2F1538-4357%2Fad2261&DestApp=DOI&SrcAppSID=EUW1ED0DCErOOKADzOXlXGFKvvplk&SrcJTitle=ASTROPHYSICAL+JOURNAL&DestDOIRegistrantName=American+Astronomical+Society
Volltext
Verfasserangaben:Mario Pasquato, Piero Trevisan, Abbas Askar, Pablo Lemos, Gaia Carenini, Michela Mapelli, and Yashar Hezaveh

MARC

LEADER 00000caa a2200000 c 4500
001 1903189942
003 DE-627
005 20241205173547.0
007 cr uuu---uuuuu
008 240923s2024 xx |||||o 00| ||eng c
024 7 |a 10.3847/1538-4357/ad2261  |2 doi 
035 |a (DE-627)1903189942 
035 |a (DE-599)KXP1903189942 
035 |a (OCoLC)1475312516 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Pasquato, Mario  |e VerfasserIn  |0 (DE-588)1342786785  |0 (DE-627)1903190541  |4 aut 
245 1 0 |a Interpretable machine learning for finding intermediate-mass black holes  |c Mario Pasquato, Piero Trevisan, Abbas Askar, Pablo Lemos, Gaia Carenini, Michela Mapelli, and Yashar Hezaveh 
264 1 |c 2024 April 10 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 23.09.2024 
520 |a Definitive evidence that globular clusters (GCs) host intermediate-mass black holes (IMBHs) is elusive. Machine-learning (ML) models trained on GC simulations can in principle predict IMBH host candidates based on observable features. This approach has two limitations: first, an accurate ML model is expected to be a black box due to complexity; second, despite our efforts to simulate GCs realistically, the simulation physics or initial conditions may fail to reflect reality fully. Therefore our training data may be biased, leading to a failure in generalization to observational data. Both the first issue-explainability/interpretability-and the second-out of distribution generalization and fairness-are active areas of research in ML. Here we employ techniques from these fields to address them: we use the anchors method to explain an Extreme Gradient Boosting (XGBoost) classifier; we also independently train a natively interpretable model using Certifiably Optimal RulE ListS (CORELS). The resulting model has a clear physical meaning, but loses some performance with respect to XGBoost. We evaluate potential candidates in real data based not only on classifier predictions but also on their similarity to the training data, measured by the likelihood of a kernel density estimation model. This measures the realism of our simulated data and mitigates the risk that our models may produce biased predictions by working in extrapolation. We apply our classifiers to real GCs, obtaining a predicted classification, a measure of the confidence of the prediction, an out-of-distribution flag, a local rule explaining the prediction of XGBoost, and a global rule from CORELS. 
650 4 |a ASTROPHYSICAL IMPLICATIONS 
650 4 |a GLOBULAR-CLUSTERS 
650 4 |a HIGH-STAKES DECISIONS 
650 4 |a MILKY-WAY 
650 4 |a MOCCA CODE 
650 4 |a MONTE-CARLO SIMULATIONS 
650 4 |a NO EVIDENCE 
650 4 |a RUNAWAY COLLISIONS 
650 4 |a STAR CLUSTER SIMULATIONS 
650 4 |a SURVEY DATABASE I 
700 1 |a Trevisan, Piero  |e VerfasserIn  |4 aut 
700 1 |a Askar, Abbas  |e VerfasserIn  |0 (DE-588)1177054809  |0 (DE-627)104833743X  |0 (DE-576)517266172  |4 aut 
700 1 |a Lemos, Pablo  |e VerfasserIn  |4 aut 
700 1 |a Carenini, Gaia  |e VerfasserIn  |4 aut 
700 1 |a Mapelli, Michela  |e VerfasserIn  |0 (DE-588)1241482039  |0 (DE-627)1770939504  |4 aut 
700 1 |a Hezaveh, Yashar  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The astrophysical journal  |d London : Institute of Physics Publ., 1995  |g 965(2024), 1, Artikel-ID 89, Seite 1-15  |h Online-Ressource  |w (DE-627)269019219  |w (DE-600)1473835-1  |w (DE-576)077662733  |x 1538-4357  |7 nnas  |a Interpretable machine learning for finding intermediate-mass black holes 
773 1 8 |g volume:965  |g year:2024  |g number:1  |g elocationid:89  |g pages:1-15  |g extent:15  |a Interpretable machine learning for finding intermediate-mass black holes 
856 4 0 |u https://doi.org/10.3847/1538-4357/ad2261  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.3847%2F1538-4357%2Fad2261&DestApp=DOI&SrcAppSID=EUW1ED0DCErOOKADzOXlXGFKvvplk&SrcJTitle=ASTROPHYSICAL+JOURNAL&DestDOIRegistrantName=American+Astronomical+Society  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240923 
993 |a Article 
994 |a 2024 
998 |g 1241482039  |a Mapelli, Michela  |m 1241482039:Mapelli, Michela  |d 700000  |d 714000  |d 714200  |d 700000  |d 728500  |e 700000PM1241482039  |e 714000PM1241482039  |e 714200PM1241482039  |e 700000PM1241482039  |e 728500PM1241482039  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/700000/  |k 1/700000/728500/  |p 6 
999 |a KXP-PPN1903189942  |e 4582515010 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Interpretable machine learning for finding intermediate-mass black holes","title":"Interpretable machine learning for finding intermediate-mass black holes"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Vol. 447 (1995) [?]-"],"note":["Gesehen am 18.01.2022","Fortsetzung der Druck-Ausgabe"],"name":{"displayForm":["publ. in coll. with the American Astronomical Society. S. Chandrasekhar, managing ed"]},"id":{"issn":["1538-4357"],"zdb":["1473835-1"],"eki":["269019219"]},"recId":"269019219","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"subtitle":"an international review of spectroscopy and astronomical physics","title":"The astrophysical journal","title_sort":"astrophysical journal"}],"titleAlt":[{"title":"The astrophysical journal / 1"},{"title":"ApJ"}],"origin":[{"publisherPlace":"London ; Chicago, Ill. [u.a.]","dateIssuedDisp":"[1995?]-","publisher":"Institute of Physics Publ. ; Univ. of Chicago Press"}],"part":{"text":"965(2024), 1, Artikel-ID 89, Seite 1-15","extent":"15","volume":"965","pages":"1-15","year":"2024","issue":"1"},"disp":"Interpretable machine learning for finding intermediate-mass black holesThe astrophysical journal","language":["eng"]}],"origin":[{"dateIssuedDisp":"2024 April 10","dateIssuedKey":"2024"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.3847/1538-4357/ad2261"],"eki":["1903189942"]},"recId":"1903189942","physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"note":["Gesehen am 23.09.2024"],"person":[{"given":"Mario","family":"Pasquato","roleDisplay":"VerfasserIn","role":"aut","display":"Pasquato, Mario"},{"display":"Trevisan, Piero","role":"aut","roleDisplay":"VerfasserIn","family":"Trevisan","given":"Piero"},{"role":"aut","display":"Askar, Abbas","roleDisplay":"VerfasserIn","family":"Askar","given":"Abbas"},{"family":"Lemos","given":"Pablo","role":"aut","display":"Lemos, Pablo","roleDisplay":"VerfasserIn"},{"given":"Gaia","family":"Carenini","role":"aut","display":"Carenini, Gaia","roleDisplay":"VerfasserIn"},{"family":"Mapelli","given":"Michela","roleDisplay":"VerfasserIn","display":"Mapelli, Michela","role":"aut"},{"role":"aut","display":"Hezaveh, Yashar","roleDisplay":"VerfasserIn","family":"Hezaveh","given":"Yashar"}],"name":{"displayForm":["Mario Pasquato, Piero Trevisan, Abbas Askar, Pablo Lemos, Gaia Carenini, Michela Mapelli, and Yashar Hezaveh"]}} 
SRT |a PASQUATOMAINTERPRETA2024