To follow or not to follow: estimating political opinion from Twitter data using a network-based machine learning approach

Studying political opinions of citizens stands as a fundamental pursuit for both policymakers and researchers. While traditional surveys remain the primary method to investigate individual political opinions, the advent of social media data (SMD) offers novel prospects. However, the number of studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brandenstein, Nils (VerfasserIn) , Montag, Christian (VerfasserIn) , Sindermann, Cornelia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 3, 2024
In: Social science computer review
Year: 2024, Pages: 1-22
ISSN:1552-8286
DOI:10.1177/08944393241279418
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1177/08944393241279418
Volltext
Verfasserangaben:Nils Brandenstein, Christian Montag, and Cornelia Sindermann

MARC

LEADER 00000caa a22000002c 4500
001 1903729742
003 DE-627
005 20241205174704.0
007 cr uuu---uuuuu
008 240930s2024 xx |||||o 00| ||eng c
024 7 |a 10.1177/08944393241279418  |2 doi 
035 |a (DE-627)1903729742 
035 |a (DE-599)KXP1903729742 
035 |a (OCoLC)1475313431 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Brandenstein, Nils  |e VerfasserIn  |0 (DE-588)1191284239  |0 (DE-627)1669953556  |4 aut 
245 1 0 |a To follow or not to follow  |b estimating political opinion from Twitter data using a network-based machine learning approach  |c Nils Brandenstein, Christian Montag, and Cornelia Sindermann 
264 1 |c September 3, 2024 
300 |b Illustrationen 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.09.2024 
520 |a Studying political opinions of citizens stands as a fundamental pursuit for both policymakers and researchers. While traditional surveys remain the primary method to investigate individual political opinions, the advent of social media data (SMD) offers novel prospects. However, the number of studies using SMD to extract individuals’ political opinions are limited and differ greatly in their methodological approaches and levels of success. Recent studies highlight the benefits of analyzing individuals’ social media network structure to estimate political opinions. Nevertheless, current methodologies exhibit limitations, including the use of simplistic linear models and a predominant focus on samples from the United States. Addressing these issues, we employ an unsupervised Variational Autoencoder (VAE) machine learning model to extract individual opinion estimates from SMD of N = 276 008 German Twitter (now called ’X’) users, compare its performance to a linear model and validate model estimates on self-reported opinion measures. Our findings suggest that the VAE captures Twitter users’ network structure more precisely, leading to higher accuracy in following decision predictions and associations with self-reported political ideology and voting intentions. Our study emphasizes the need for advanced analytical approaches capable to capture complex relationships in social media networks when studying political opinion, at least in non-US contexts. 
700 1 |a Montag, Christian  |d 1977-  |e VerfasserIn  |0 (DE-588)138476195  |0 (DE-627)60260494X  |0 (DE-576)307732266  |4 aut 
700 1 |a Sindermann, Cornelia  |e VerfasserIn  |0 (DE-588)1190045427  |0 (DE-627)1668726351  |4 aut 
773 0 8 |i Enthalten in  |t Social science computer review  |d Thousand Oaks, Calif. [u.a.] : Sage, 1988  |g (2024), Seite 1-22  |h Online-Ressource  |w (DE-627)320615278  |w (DE-600)2021894-1  |w (DE-576)276817257  |x 1552-8286  |7 nnas  |a To follow or not to follow estimating political opinion from Twitter data using a network-based machine learning approach 
773 1 8 |g year:2024  |g pages:1-22  |g extent:22  |a To follow or not to follow estimating political opinion from Twitter data using a network-based machine learning approach 
856 4 0 |u https://doi.org/10.1177/08944393241279418  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20240930 
993 |a Article 
994 |a 2024 
998 |g 1191284239  |a Brandenstein, Nils  |m 1191284239:Brandenstein, Nils  |d 100000  |d 100200  |e 100000PB1191284239  |e 100200PB1191284239  |k 0/100000/  |k 1/100000/100200/  |p 1  |x j 
999 |a KXP-PPN1903729742  |e 4584635722 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"September 3, 2024"}],"id":{"doi":["10.1177/08944393241279418"],"eki":["1903729742"]},"name":{"displayForm":["Nils Brandenstein, Christian Montag, and Cornelia Sindermann"]},"physDesc":[{"noteIll":"Illustrationen","extent":"22 S."}],"relHost":[{"id":{"eki":["320615278"],"zdb":["2021894-1"],"issn":["1552-8286"]},"origin":[{"publisherPlace":"Thousand Oaks, Calif. [u.a.]","dateIssuedDisp":"1988-","publisher":"Sage","dateIssuedKey":"1988"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Social science computer review","title":"Social science computer review","subtitle":"SSCORE"}],"titleAlt":[{"title":"SSCORE"}],"part":{"year":"2024","pages":"1-22","text":"(2024), Seite 1-22","extent":"22"},"pubHistory":["Volume 6, Issue 1 (April 1988)-"],"language":["eng"],"recId":"320615278","disp":"To follow or not to follow estimating political opinion from Twitter data using a network-based machine learning approachSocial science computer review","note":["Gesehen am 08.04.2009"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"title":[{"title_sort":"To follow or not to follow","title":"To follow or not to follow","subtitle":"estimating political opinion from Twitter data using a network-based machine learning approach"}],"person":[{"given":"Nils","family":"Brandenstein","role":"aut","display":"Brandenstein, Nils","roleDisplay":"VerfasserIn"},{"family":"Montag","given":"Christian","display":"Montag, Christian","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Cornelia","family":"Sindermann","role":"aut","display":"Sindermann, Cornelia","roleDisplay":"VerfasserIn"}],"note":["Gesehen am 30.09.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1903729742"} 
SRT |a BRANDENSTETOFOLLOWOR3202