A deep learning method for comparing Bayesian hierarchical models
Bayesian model comparison (BMC) offers a principled approach to assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nes...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2024
|
| In: |
Psychological methods
Year: 2024, Pages: ? |
| ISSN: | 1939-1463 |
| DOI: | 10.1037/met0000645 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1037/met0000645 |
| Author Notes: | Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1903735750 | ||
| 003 | DE-627 | ||
| 005 | 20241205174752.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 240930s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1037/met0000645 |2 doi | |
| 035 | |a (DE-627)1903735750 | ||
| 035 | |a (DE-599)KXP1903735750 | ||
| 035 | |a (OCoLC)1475313111 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 11 |2 sdnb | ||
| 100 | 1 | |a Elsemüller, Lasse |e VerfasserIn |0 (DE-588)1166863891 |0 (DE-627)1030747598 |0 (DE-576)510926959 |4 aut | |
| 245 | 1 | 2 | |a A deep learning method for comparing Bayesian hierarchical models |c Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev |
| 264 | 1 | |c 2024 | |
| 300 | |a ? | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.09.2024 | ||
| 520 | |a Bayesian model comparison (BMC) offers a principled approach to assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. Additionally, we demonstrate how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method. (PsycInfo Database Record (c) 2024 APA, all rights reserved) | ||
| 650 | 4 | |a Bayesian Analysis | |
| 650 | 4 | |a Deep Neural Networks | |
| 650 | 4 | |a Inference | |
| 650 | 4 | |a Mathematical Modeling | |
| 650 | 4 | |a Probability | |
| 650 | 4 | |a Simulation | |
| 700 | 1 | |a Schnürch, Martin |d 1991- |e VerfasserIn |0 (DE-588)1207475564 |0 (DE-627)1693803720 |4 aut | |
| 700 | 1 | |a Bürkner, Paul-Christian |d 1991- |e VerfasserIn |0 (DE-588)1071571338 |0 (DE-627)826045715 |0 (DE-576)433154705 |4 aut | |
| 700 | 1 | |a Radev, Stefan |d 1993- |e VerfasserIn |0 (DE-588)1155312392 |0 (DE-627)1016724993 |0 (DE-576)501536248 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Psychological methods |d Washington, DC : American Psychological Association, 1996 |g (2024), Seite ? |h Online-Ressource |w (DE-627)363738002 |w (DE-600)2103345-6 |w (DE-576)251938735 |x 1939-1463 |7 nnas |a A deep learning method for comparing Bayesian hierarchical models |
| 773 | 1 | 8 | |g year:2024 |g pages:? |g extent:? |a A deep learning method for comparing Bayesian hierarchical models |
| 856 | 4 | 0 | |u https://doi.org/10.1037/met0000645 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20240930 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1155312392 |a Radev, Stefan |m 1155312392:Radev, Stefan |p 4 |y j | ||
| 998 | |g 1207475564 |a Schnürch, Martin |m 1207475564:Schnürch, Martin |p 2 | ||
| 998 | |g 1166863891 |a Elsemüller, Lasse |m 1166863891:Elsemüller, Lasse |d 100000 |d 100200 |e 100000PE1166863891 |e 100200PE1166863891 |k 0/100000/ |k 1/100000/100200/ |p 1 |x j | ||
| 999 | |a KXP-PPN1903735750 |e 4584647836 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev"]},"id":{"eki":["1903735750"],"doi":["10.1037/met0000645"]},"person":[{"family":"Elsemüller","role":"aut","given":"Lasse","display":"Elsemüller, Lasse"},{"display":"Schnürch, Martin","family":"Schnürch","given":"Martin","role":"aut"},{"display":"Bürkner, Paul-Christian","given":"Paul-Christian","role":"aut","family":"Bürkner"},{"family":"Radev","given":"Stefan","role":"aut","display":"Radev, Stefan"}],"relHost":[{"id":{"issn":["1939-1463"],"eki":["363738002"],"zdb":["2103345-6"]},"part":{"pages":"?","year":"2024","text":"(2024), Seite ?","extent":"?"},"corporate":[{"role":"isb","display":"American Psychological Association"}],"pubHistory":["1.1996 -"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.02.05"],"title":[{"subtitle":"published quarterly by the American Psychological Association","title_sort":"Psychological methods","title":"Psychological methods"}],"origin":[{"dateIssuedDisp":"1996-","dateIssuedKey":"1996","publisherPlace":"Washington, DC ; [Erscheinungsort nicht ermittelbar]","publisher":"American Psychological Association ; Ovid"}],"disp":"A deep learning method for comparing Bayesian hierarchical modelsPsychological methods","physDesc":[{"extent":"Online-Ressource"}],"recId":"363738002"}],"origin":[{"dateIssuedDisp":"2024","dateIssuedKey":"2024"}],"title":[{"title":"A deep learning method for comparing Bayesian hierarchical models","title_sort":"deep learning method for comparing Bayesian hierarchical models"}],"note":["Gesehen am 30.09.2024"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1903735750","physDesc":[{"extent":"? S."}]} | ||
| SRT | |a ELSEMUELLEDEEPLEARNI2024 | ||