Graph neural networks for individual treatment effect estimation: methods

Individual treatment effect (ITE) estimation is an important task for personalized decision-making in clinical settings. However, the data used to train an ITE estimation model may be limited. In this case, we expect that information regarding causal connectivity within features can facilitate model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sirazitdinov, Andrei (VerfasserIn) , Buchwald, Marcus (VerfasserIn) , Heuveline, Vincent (VerfasserIn) , Hesser, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 02 August 2024
In: IEEE access
Year: 2024, Jahrgang: 12, Pages: 106884-106894
ISSN:2169-3536
DOI:10.1109/ACCESS.2024.3437665
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/ACCESS.2024.3437665
Verlag, kostenfrei, Volltext: http://ieeexplore.ieee.org/document/10621010
Volltext
Verfasserangaben:Andrei Sirazitdinov, Marcus Buchwald, Vincent Heuveline, and Jürgen Hesser, (Member, IEEE)

MARC

LEADER 00000caa a2200000 c 4500
001 1906378681
003 DE-627
005 20241205182108.0
007 cr uuu---uuuuu
008 241022s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/ACCESS.2024.3437665  |2 doi 
035 |a (DE-627)1906378681 
035 |a (DE-599)KXP1906378681 
035 |a (OCoLC)1475316340 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Sirazitdinov, Andrei  |d 1993-  |e VerfasserIn  |0 (DE-588)1345691858  |0 (DE-627)1906379483  |4 aut 
245 1 0 |a Graph neural networks for individual treatment effect estimation  |b methods  |c Andrei Sirazitdinov, Marcus Buchwald, Vincent Heuveline, and Jürgen Hesser, (Member, IEEE) 
264 1 |c 02 August 2024 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.10.2024 
520 |a Individual treatment effect (ITE) estimation is an important task for personalized decision-making in clinical settings. However, the data used to train an ITE estimation model may be limited. In this case, we expect that information regarding causal connectivity within features can facilitate model training and thus lead to better predictions. In this study, we incorporated causal information about the connectivity within features represented by a Directed Acyclic Graph (DAG) into the problem of ITE estimation. For this purpose, we propose a novel method based on Graph Neural Networks (GNN). Our results show that the proposed approach performs comparably to the current state-of-the-art methods on existing datasets. Using an artificial dataset, we demonstrate the potential advantages of using real graphs responsible for the data generation process over empty graphs with no edges. These advantages are particularly evident for datasets with limited training sizes and correctly defined DAGs. These findings highlight the potential of GNNs in personalized medicine for improving the assessment of individual treatment effects. 
650 4 |a Causal inference 
650 4 |a Computational modeling 
650 4 |a Estimation 
650 4 |a graph neural networks 
650 4 |a Graph neural networks 
650 4 |a individual treatment effect estimation 
650 4 |a Reviews 
650 4 |a Task analysis 
650 4 |a Training 
650 4 |a Vectors 
700 1 |a Buchwald, Marcus  |d 1995-  |e VerfasserIn  |0 (DE-588)134569203X  |0 (DE-627)1906379939  |4 aut 
700 1 |a Heuveline, Vincent  |d 1968-  |e VerfasserIn  |0 (DE-588)1046579266  |0 (DE-627)776691880  |0 (DE-576)399904727  |4 aut 
700 1 |a Hesser, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1020647353  |0 (DE-627)691291071  |0 (DE-576)361513739  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE access  |d New York, NY : IEEE, 2013  |g 12(2024), Seite 106884-106894  |h Online-Ressource  |w (DE-627)728440385  |w (DE-600)2687964-5  |w (DE-576)373180713  |x 2169-3536  |7 nnas 
773 1 8 |g volume:12  |g year:2024  |g pages:106884-106894  |g extent:11  |a Graph neural networks for individual treatment effect estimation methods 
856 4 0 |u https://doi.org/10.1109/ACCESS.2024.3437665  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://ieeexplore.ieee.org/document/10621010  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241022 
993 |a Article 
994 |a 2024 
998 |g 1020647353  |a Hesser, Jürgen  |m 1020647353:Hesser, Jürgen  |d 60000  |d 65200  |e 60000PH1020647353  |e 65200PH1020647353  |k 0/60000/  |k 1/60000/65200/  |p 4  |y j 
998 |g 1046579266  |a Heuveline, Vincent  |m 1046579266:Heuveline, Vincent  |d 700000  |d 708000  |e 700000PH1046579266  |e 708000PH1046579266  |k 0/700000/  |k 1/700000/708000/  |p 3 
998 |g 134569203X  |a Buchwald, Marcus  |m 134569203X:Buchwald, Marcus  |d 60000  |d 65200  |d 700000  |d 708000  |e 60000PB134569203X  |e 65200PB134569203X  |e 700000PB134569203X  |e 708000PB134569203X  |k 0/60000/  |k 1/60000/65200/  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1345691858  |a Sirazitdinov, Andrei  |m 1345691858:Sirazitdinov, Andrei  |d 60000  |d 65200  |d 910000  |d 912000  |e 60000PS1345691858  |e 65200PS1345691858  |e 910000PS1345691858  |e 912000PS1345691858  |k 0/60000/  |k 1/60000/65200/  |k 0/910000/  |k 1/910000/912000/  |p 1  |x j 
999 |a KXP-PPN1906378681  |e 4600739779 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 22.10.2024"],"person":[{"role":"aut","family":"Sirazitdinov","given":"Andrei","display":"Sirazitdinov, Andrei"},{"given":"Marcus","display":"Buchwald, Marcus","family":"Buchwald","role":"aut"},{"role":"aut","family":"Heuveline","display":"Heuveline, Vincent","given":"Vincent"},{"given":"Jürgen","display":"Hesser, Jürgen","family":"Hesser","role":"aut"}],"recId":"1906378681","language":["eng"],"name":{"displayForm":["Andrei Sirazitdinov, Marcus Buchwald, Vincent Heuveline, and Jürgen Hesser, (Member, IEEE)"]},"origin":[{"dateIssuedDisp":"02 August 2024","dateIssuedKey":"2024"}],"relHost":[{"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"recId":"728440385","title":[{"title_sort":"IEEE access","title":"IEEE access","subtitle":"practical research, open solutions"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2687964-5"],"eki":["728440385"],"issn":["2169-3536"]},"origin":[{"dateIssuedDisp":"2013-","publisher":"IEEE","publisherPlace":"New York, NY","dateIssuedKey":"2013"}],"language":["eng"],"part":{"text":"12(2024), Seite 106884-106894","extent":"11","pages":"106884-106894","year":"2024","volume":"12"},"pubHistory":["1.2013 -"],"note":["Gesehen am 24.10.12"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Institute of Electrical and Electronics EngineersIEEE access","corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"titleAlt":[{"title":"Access"}]}],"id":{"eki":["1906378681"],"doi":["10.1109/ACCESS.2024.3437665"]},"physDesc":[{"extent":"11 S."}],"title":[{"title":"Graph neural networks for individual treatment effect estimation","subtitle":"methods","title_sort":"Graph neural networks for individual treatment effect estimation"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a SIRAZITDINGRAPHNEURA0220