The quest for a biological phenotype of adolescent non-suicidal self-injury: a machine-learning approach

Non-suicidal self-injury (NSSI) is a transdiagnostic psychiatric symptom with high prevalence and relevance in child and adolescent psychiatry. Therefore, it is of great interest to identify a biological phenotype associated with NSSI. The aim of the present study was to cross-sectionally investigat...

Full description

Saved in:
Bibliographic Details
Main Authors: Mürner-Lavanchy, Ines M. (Author) , Koenig, Julian (Author) , Reichl, Corinna (Author) , Josi, Johannes (Author) , Cavelti, Marialuisa (Author) , Kaess, Michael (Author)
Format: Article (Journal)
Language:English
Published: 25 January 2024
In: Translational Psychiatry
Year: 2024, Volume: 14, Pages: 1-7
ISSN:2158-3188
DOI:10.1038/s41398-024-02776-4
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41398-024-02776-4
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41398-024-02776-4
Get full text
Author Notes:Ines Mürner-Lavanchy, Julian Koenig, Corinna Reichl, Johannes Josi, Marialuisa Cavelti and Michael Kaess

MARC

LEADER 00000caa a2200000 c 4500
001 1906750130
003 DE-627
005 20260114104811.0
007 cr uuu---uuuuu
008 241024s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41398-024-02776-4  |2 doi 
035 |a (DE-627)1906750130 
035 |a (DE-599)KXP1906750130 
035 |a (OCoLC)1475317055 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Mürner-Lavanchy, Ines M.  |e VerfasserIn  |0 (DE-588)1223378225  |0 (DE-627)1742701779  |4 aut 
245 1 4 |a The quest for a biological phenotype of adolescent non-suicidal self-injury  |b a machine-learning approach  |c Ines Mürner-Lavanchy, Julian Koenig, Corinna Reichl, Johannes Josi, Marialuisa Cavelti and Michael Kaess 
264 1 |c 25 January 2024 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.10.2024 
520 |a Non-suicidal self-injury (NSSI) is a transdiagnostic psychiatric symptom with high prevalence and relevance in child and adolescent psychiatry. Therefore, it is of great interest to identify a biological phenotype associated with NSSI. The aim of the present study was to cross-sectionally investigate patterns of biological markers underlying NSSI and associated psychopathology in a sample of female patients and healthy controls. Comprehensive clinical data, saliva and blood samples, heart rate variability and pain sensitivity, were collected in n = 149 patients with NSSI and n = 40 healthy participants. Using machine-based learning, we tested the extent to which oxytocin, dehydroepiandrosterone (DHEA), beta-endorphin, free triiodothyronine (fT3), leukocytes, heart rate variability and pain sensitivity were able to classify participants regarding their clinical outcomes in NSSI, depression and borderline personality disorder symptomatology. We evaluated the predictive performance of several models (linear and logistic regression, elastic net regression, random forests, gradient boosted trees) using repeated cross-validation. With NSSI as an outcome variable, both logistic regression and machine learning models showed moderate predictive performance (Area under the Receiver Operating Characteristic Curve between 0.67 and 0.69). Predictors with the highest predictive power were low oxytocin (OR = 0.55; p = 0.002), low pain sensitivity (OR = 1.15; p = 0.021), and high leukocytes (OR = 1.67; p = 0.015). For the psychopathological outcome variables, i.e., depression and borderline personality disorder symptomatology, models including the biological variables performed not better than the null model. A combination of hormonal and inflammatory markers, as well as pain sensitivity, were able to discriminate between participants with and without NSSI disorder. Based on this dataset, however, complex machine learning models were not able to detect non-linear patterns of associations between the biological markers. These findings need replication and future research will reveal the extent to which the respective biomarkers are useful for longitudinal prediction of clinical outcomes or treatment response. 
650 4 |a Diagnostic markers 
650 4 |a Human behaviour 
650 4 |a Physiology 
650 4 |a Predictive markers 
700 1 |a Koenig, Julian  |d 1985-  |e VerfasserIn  |0 (DE-588)1031388052  |0 (DE-627)736334459  |0 (DE-576)378827227  |4 aut 
700 1 |a Reichl, Corinna  |d 1979-  |e VerfasserIn  |0 (DE-588)1041567499  |0 (DE-627)767098617  |0 (DE-576)393098532  |4 aut 
700 1 |a Josi, Johannes  |e VerfasserIn  |0 (DE-588)1210428156  |0 (DE-627)1698439407  |4 aut 
700 1 |a Cavelti, Marialuisa  |d 1984-  |e VerfasserIn  |0 (DE-588)111650345X  |0 (DE-627)871185911  |0 (DE-576)478437900  |4 aut 
700 1 |a Kaess, Michael  |d 1979-  |e VerfasserIn  |0 (DE-588)136367240  |0 (DE-627)694324248  |0 (DE-576)300984766  |4 aut 
773 0 8 |i Enthalten in  |t Translational Psychiatry  |d London : Nature Publishing Group, 2011  |g 14(2024), Artikel-ID 56, Seite 1-7  |h Online-Ressource  |w (DE-627)660807378  |w (DE-600)2609311-X  |w (DE-576)345003462  |x 2158-3188  |7 nnas  |a The quest for a biological phenotype of adolescent non-suicidal self-injury a machine-learning approach 
773 1 8 |g volume:14  |g year:2024  |g elocationid:56  |g pages:1-7  |g extent:7  |a The quest for a biological phenotype of adolescent non-suicidal self-injury a machine-learning approach 
856 4 0 |u https://doi.org/10.1038/s41398-024-02776-4  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://www.nature.com/articles/s41398-024-02776-4  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20241024 
993 |a Article 
994 |a 2024 
998 |g 136367240  |a Kaess, Michael  |m 136367240:Kaess, Michael  |d 910000  |d 910600  |e 910000PK136367240  |e 910600PK136367240  |k 0/910000/  |k 1/910000/910600/  |p 6  |y j 
998 |g 1031388052  |a Koenig, Julian  |m 1031388052:Koenig, Julian  |d 50000  |e 50000PK1031388052  |k 0/50000/  |p 2 
999 |a KXP-PPN1906750130  |e 4602126502 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"25 January 2024"}],"id":{"doi":["10.1038/s41398-024-02776-4"],"eki":["1906750130"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","family":"Mürner-Lavanchy","display":"Mürner-Lavanchy, Ines M.","given":"Ines M."},{"role":"aut","given":"Julian","family":"Koenig","display":"Koenig, Julian"},{"role":"aut","display":"Reichl, Corinna","family":"Reichl","given":"Corinna"},{"role":"aut","given":"Johannes","display":"Josi, Johannes","family":"Josi"},{"given":"Marialuisa","family":"Cavelti","display":"Cavelti, Marialuisa","role":"aut"},{"role":"aut","given":"Michael","display":"Kaess, Michael","family":"Kaess"}],"title":[{"title_sort":"quest for a biological phenotype of adolescent non-suicidal self-injury","subtitle":"a machine-learning approach","title":"The quest for a biological phenotype of adolescent non-suicidal self-injury"}],"physDesc":[{"extent":"7 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"2011-","publisherPlace":"London","publisher":"Nature Publishing Group","dateIssuedKey":"2011"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"eki":["660807378"],"zdb":["2609311-X"],"issn":["2158-3188"]},"language":["eng"],"part":{"volume":"14","extent":"7","year":"2024","text":"14(2024), Artikel-ID 56, Seite 1-7","pages":"1-7"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Translational Psychiatry","title":"Translational Psychiatry"}],"disp":"The quest for a biological phenotype of adolescent non-suicidal self-injury a machine-learning approachTranslational Psychiatry","pubHistory":["1.2011 -"],"note":["Gesehen am 17.05.11"],"recId":"660807378"}],"name":{"displayForm":["Ines Mürner-Lavanchy, Julian Koenig, Corinna Reichl, Johannes Josi, Marialuisa Cavelti and Michael Kaess"]},"recId":"1906750130","note":["Gesehen am 24.10.2024"]} 
SRT |a MUERNERLAVQUESTFORAB2520