ParticleSeg3D: a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recycling

Minerals, metals, and plastics are indispensable for a modern society. Yet, their limited supply necessitates optimized extraction and recycling processes, which must be meticulously adapted to the material properties. Current imaging approaches perform material analysis on crushed particles imaged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gotkowski, Karol (VerfasserIn) , Gupta, Shuvam (VerfasserIn) , Godinho, Jose R. A. (VerfasserIn) , Tochtrop, Camila G. S. (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn) , Isensee, Fabian (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 February 2024
In: Powder technology
Year: 2024, Jahrgang: 434, Pages: 1-13
ISSN:0032-5910
DOI:10.1016/j.powtec.2023.119286
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.powtec.2023.119286
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0032591023010690
Volltext
Verfasserangaben:Karol Gotkowski, Shuvam Gupta, Jose R.A. Godinho, Camila G.S. Tochtrop, Klaus H. Maier-Hein, Fabian Isensee

MARC

LEADER 00000caa a2200000 c 4500
001 1907439811
003 DE-627
005 20241205184132.0
007 cr uuu---uuuuu
008 241104s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.powtec.2023.119286  |2 doi 
035 |a (DE-627)1907439811 
035 |a (DE-599)KXP1907439811 
035 |a (OCoLC)1475621066 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Gotkowski, Karol  |e VerfasserIn  |0 (DE-588)125780510X  |0 (DE-627)1802492178  |4 aut 
245 1 0 |a ParticleSeg3D  |b a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recycling  |c Karol Gotkowski, Shuvam Gupta, Jose R.A. Godinho, Camila G.S. Tochtrop, Klaus H. Maier-Hein, Fabian Isensee 
264 1 |c 1 February 2024 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.11.2024 
520 |a Minerals, metals, and plastics are indispensable for a modern society. Yet, their limited supply necessitates optimized extraction and recycling processes, which must be meticulously adapted to the material properties. Current imaging approaches perform material analysis on crushed particles imaged with computed tomography (CT) using segmentation and mass characterization. However, their inability to reliably separate touching particles and need to annotate and retrain on new images, leaves untapped potential. By contrast, particle-level characterization unlocks better understanding of particle properties such as mass, appearance and structure. Here, we propose ParticleSeg3D, an instance segmentation method for particle-level characterization with strongly varying properties from CT images. Our approach is based on the powerful nnU-Net, introduces a particle size normalization, employs a border-core representation, and is trained with a diverse dataset. We demonstrate that ParticleSeg3D can be applied out-of-the-box to a large variety of materials without retraining, including materials and properties not present during training. 
650 4 |a 3D 
650 4 |a Deep learning 
650 4 |a Individual particle characterization 
650 4 |a Instance segmentation 
650 4 |a Mineral processing 
650 4 |a Recycling 
700 1 |a Gupta, Shuvam  |e VerfasserIn  |4 aut 
700 1 |a Godinho, Jose R. A.  |e VerfasserIn  |4 aut 
700 1 |a Tochtrop, Camila G. S.  |e VerfasserIn  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
700 1 |a Isensee, Fabian  |d 1990-  |e VerfasserIn  |0 (DE-588)1207568430  |0 (DE-627)1694044998  |4 aut 
773 0 8 |i Enthalten in  |t Powder technology  |d Amsterdam [u.a.] : Elsevier Science, 1967  |g 434(2024), Artikel-ID 119286, Seite 1-13  |h Online-Ressource  |w (DE-627)320599019  |w (DE-600)2019938-7  |w (DE-576)098474278  |x 0032-5910  |7 nnas  |a ParticleSeg3D a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recycling 
773 1 8 |g volume:434  |g year:2024  |g elocationid:119286  |g pages:1-13  |g extent:13  |a ParticleSeg3D a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recycling 
856 4 0 |u https://doi.org/10.1016/j.powtec.2023.119286  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0032591023010690  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241104 
993 |a Article 
994 |a 2024 
998 |g 1207568430  |a Isensee, Fabian  |m 1207568430:Isensee, Fabian  |p 6  |y j 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 910000  |d 911400  |e 910000PM1100551875  |e 911400PM1100551875  |k 0/910000/  |k 1/910000/911400/  |p 5 
999 |a KXP-PPN1907439811  |e 4609718448 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"1 February 2024","dateIssuedKey":"2024"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"ParticleSeg3D","title_sort":"ParticleSeg3D","subtitle":"a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recycling"}],"person":[{"role":"aut","display":"Gotkowski, Karol","family":"Gotkowski","given":"Karol"},{"role":"aut","display":"Gupta, Shuvam","family":"Gupta","given":"Shuvam"},{"role":"aut","given":"Jose R. A.","family":"Godinho","display":"Godinho, Jose R. A."},{"role":"aut","display":"Tochtrop, Camila G. S.","given":"Camila G. S.","family":"Tochtrop"},{"display":"Maier-Hein, Klaus H.","given":"Klaus H.","family":"Maier-Hein","role":"aut"},{"display":"Isensee, Fabian","family":"Isensee","given":"Fabian","role":"aut"}],"note":["Gesehen am 04.11.2024"],"name":{"displayForm":["Karol Gotkowski, Shuvam Gupta, Jose R.A. Godinho, Camila G.S. Tochtrop, Klaus H. Maier-Hein, Fabian Isensee"]},"relHost":[{"id":{"zdb":["2019938-7"],"issn":["0032-5910"],"eki":["320599019"]},"recId":"320599019","part":{"extent":"13","volume":"434","pages":"1-13","text":"434(2024), Artikel-ID 119286, Seite 1-13","year":"2024"},"disp":"ParticleSeg3D a scalable out-of-the-box deep learning segmentation solution for individual particle characterization from micro CT images in mineral processing and recyclingPowder technology","physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"pubHistory":["1.1967/68 - 214.2011; Vol. 215/216.2012 -"],"title":[{"title":"Powder technology","title_sort":"Powder technology","subtitle":"an international journal on the science and technology of wet and dry particulate systems"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"1967","publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"1967-","publisher":"Elsevier Science"}],"note":["Gesehen am 19.06.2023"]}],"id":{"eki":["1907439811"],"doi":["10.1016/j.powtec.2023.119286"]},"recId":"1907439811","language":["eng"],"physDesc":[{"extent":"13 S."}]} 
SRT |a GOTKOWSKIKPARTICLESE1202