Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation
We compare two different numerical methods to integrate in time spatially delocalized initial densities using the Schrödinger-Poisson equation system as the evolution law. The basic equation is a nonlinear Schrödinger equation with an auto-gravitating potential created by the wave function density...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
29 March 2024
|
| In: |
Computer physics communications
Year: 2024, Volume: 300, Pages: 109192-1-109192-14 |
| ISSN: | 1879-2944 |
| DOI: | 10.1016/j.cpc.2024.109192 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cpc.2024.109192 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0010465524001152 |
| Author Notes: | Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1908139099 | ||
| 003 | DE-627 | ||
| 005 | 20241205185417.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241111s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.cpc.2024.109192 |2 doi | |
| 035 | |a (DE-627)1908139099 | ||
| 035 | |a (DE-599)KXP1908139099 | ||
| 035 | |a (OCoLC)1475637673 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Schwersenz, Nico |e VerfasserIn |0 (DE-588)1235759709 |0 (DE-627)1760792969 |4 aut | |
| 245 | 1 | 0 | |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation |c Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger |
| 264 | 1 | |c 29 March 2024 | |
| 300 | |a 14 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.11.2024 | ||
| 520 | |a We compare two different numerical methods to integrate in time spatially delocalized initial densities using the Schrödinger-Poisson equation system as the evolution law. The basic equation is a nonlinear Schrödinger equation with an auto-gravitating potential created by the wave function density itself. The latter is determined as a solution of Poisson's equation modelling, e.g., non-relativistic gravity. For reasons of complexity, we treat a one-dimensional version of the problem whose numerical integration is still challenging because of the extreme long-range forces (being constant in the asymptotic limit). Both of our methods, a Strang splitting scheme and a basis function approach using B-splines, are compared in numerical convergence and effectivity. Overall, our Strang-splitting evolution compares favourably with the B-spline method. In particular, by using an adaptive time-stepper rather large one-dimensional boxes can be treated. These results give hope for extensions to two spatial dimensions for not too small boxes and large evolution times necessary for describing, for instance, dark matter formation over cosmologically relevant scales. | ||
| 650 | 4 | |a B-spline basis | |
| 650 | 4 | |a Gravitation | |
| 650 | 4 | |a Pseudospectral method | |
| 650 | 4 | |a Schrödinger-Poisson system | |
| 650 | 4 | |a Wave-like dark matter | |
| 700 | 1 | |a Loaiza, Victor |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zimmermann, Tim |e VerfasserIn |0 (DE-588)1235759598 |0 (DE-627)1760792632 |4 aut | |
| 700 | 1 | |a Madroñero, Javier |e VerfasserIn |0 (DE-588)121286882X |0 (DE-627)1702912515 |4 aut | |
| 700 | 1 | |a Wimberger, Sandro |d 1974- |e VerfasserIn |0 (DE-588)128781262 |0 (DE-627)379681994 |0 (DE-576)297329758 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Computer physics communications |d [Amsterdam] : Elsevier B.V., 1969 |g 300(2024), Artikel-ID 109192, Seite 109192-1-109192-14 |h Online-Ressource |w (DE-627)266014453 |w (DE-600)1466511-6 |w (DE-576)074959662 |x 1879-2944 |7 nnas |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation |
| 773 | 1 | 8 | |g volume:300 |g year:2024 |g elocationid:109192 |g pages:109192-1-109192-14 |g extent:14 |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.cpc.2024.109192 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0010465524001152 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241111 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 128781262 |a Wimberger, Sandro |m 128781262:Wimberger, Sandro |d 130000 |d 130300 |e 130000PW128781262 |e 130300PW128781262 |k 0/130000/ |k 1/130000/130300/ |p 5 |y j | ||
| 998 | |g 1235759598 |a Zimmermann, Tim |m 1235759598:Zimmermann, Tim |p 3 | ||
| 998 | |g 1235759709 |a Schwersenz, Nico |m 1235759709:Schwersenz, Nico |p 1 |x j | ||
| 999 | |a KXP-PPN1908139099 |e 4612959795 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"roleDisplay":"VerfasserIn","display":"Schwersenz, Nico","role":"aut","family":"Schwersenz","given":"Nico"},{"given":"Victor","family":"Loaiza","role":"aut","roleDisplay":"VerfasserIn","display":"Loaiza, Victor"},{"family":"Zimmermann","given":"Tim","roleDisplay":"VerfasserIn","display":"Zimmermann, Tim","role":"aut"},{"given":"Javier","family":"Madroñero","role":"aut","display":"Madroñero, Javier","roleDisplay":"VerfasserIn"},{"family":"Wimberger","given":"Sandro","display":"Wimberger, Sandro","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation","title":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.11.2024"],"language":["eng"],"recId":"1908139099","name":{"displayForm":["Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger"]},"origin":[{"dateIssuedDisp":"29 March 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1016/j.cpc.2024.109192"],"eki":["1908139099"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"[Amsterdam] ; Amsterdam","dateIssuedDisp":"1969-","publisher":"Elsevier B.V. ; North Holland Publ. Co.","dateIssuedKey":"1969"}],"id":{"issn":["1879-2944"],"eki":["266014453"],"zdb":["1466511-6"]},"pubHistory":["1.1969/70 - 185.2014; Vol. 186.2015 -"],"part":{"extent":"14","text":"300(2024), Artikel-ID 109192, Seite 109192-1-109192-14","volume":"300","pages":"109192-1-109192-14","year":"2024"},"disp":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equationComputer physics communications","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 31.03.25"],"language":["eng"],"recId":"266014453","title":[{"subtitle":"an international journal for computational physics and physical chemistry","title":"Computer physics communications","title_sort":"Computer physics communications"}]}]} | ||
| SRT | |a SCHWERSENZCOMPARISON2920 | ||