Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation

We compare two different numerical methods to integrate in time spatially delocalized initial densities using the Schrödinger-Poisson equation system as the evolution law. The basic equation is a nonlinear Schrödinger equation with an auto-gravitating potential created by the wave function density...

Full description

Saved in:
Bibliographic Details
Main Authors: Schwersenz, Nico (Author) , Loaiza, Victor (Author) , Zimmermann, Tim (Author) , Madroñero, Javier (Author) , Wimberger, Sandro (Author)
Format: Article (Journal)
Language:English
Published: 29 March 2024
In: Computer physics communications
Year: 2024, Volume: 300, Pages: 109192-1-109192-14
ISSN:1879-2944
DOI:10.1016/j.cpc.2024.109192
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.cpc.2024.109192
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0010465524001152
Get full text
Author Notes:Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger

MARC

LEADER 00000caa a2200000 c 4500
001 1908139099
003 DE-627
005 20241205185417.0
007 cr uuu---uuuuu
008 241111s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cpc.2024.109192  |2 doi 
035 |a (DE-627)1908139099 
035 |a (DE-599)KXP1908139099 
035 |a (OCoLC)1475637673 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Schwersenz, Nico  |e VerfasserIn  |0 (DE-588)1235759709  |0 (DE-627)1760792969  |4 aut 
245 1 0 |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation  |c Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger 
264 1 |c 29 March 2024 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.11.2024 
520 |a We compare two different numerical methods to integrate in time spatially delocalized initial densities using the Schrödinger-Poisson equation system as the evolution law. The basic equation is a nonlinear Schrödinger equation with an auto-gravitating potential created by the wave function density itself. The latter is determined as a solution of Poisson's equation modelling, e.g., non-relativistic gravity. For reasons of complexity, we treat a one-dimensional version of the problem whose numerical integration is still challenging because of the extreme long-range forces (being constant in the asymptotic limit). Both of our methods, a Strang splitting scheme and a basis function approach using B-splines, are compared in numerical convergence and effectivity. Overall, our Strang-splitting evolution compares favourably with the B-spline method. In particular, by using an adaptive time-stepper rather large one-dimensional boxes can be treated. These results give hope for extensions to two spatial dimensions for not too small boxes and large evolution times necessary for describing, for instance, dark matter formation over cosmologically relevant scales. 
650 4 |a B-spline basis 
650 4 |a Gravitation 
650 4 |a Pseudospectral method 
650 4 |a Schrödinger-Poisson system 
650 4 |a Wave-like dark matter 
700 1 |a Loaiza, Victor  |e VerfasserIn  |4 aut 
700 1 |a Zimmermann, Tim  |e VerfasserIn  |0 (DE-588)1235759598  |0 (DE-627)1760792632  |4 aut 
700 1 |a Madroñero, Javier  |e VerfasserIn  |0 (DE-588)121286882X  |0 (DE-627)1702912515  |4 aut 
700 1 |a Wimberger, Sandro  |d 1974-  |e VerfasserIn  |0 (DE-588)128781262  |0 (DE-627)379681994  |0 (DE-576)297329758  |4 aut 
773 0 8 |i Enthalten in  |t Computer physics communications  |d [Amsterdam] : Elsevier B.V., 1969  |g 300(2024), Artikel-ID 109192, Seite 109192-1-109192-14  |h Online-Ressource  |w (DE-627)266014453  |w (DE-600)1466511-6  |w (DE-576)074959662  |x 1879-2944  |7 nnas  |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation 
773 1 8 |g volume:300  |g year:2024  |g elocationid:109192  |g pages:109192-1-109192-14  |g extent:14  |a Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation 
856 4 0 |u https://doi.org/10.1016/j.cpc.2024.109192  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0010465524001152  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241111 
993 |a Article 
994 |a 2024 
998 |g 128781262  |a Wimberger, Sandro  |m 128781262:Wimberger, Sandro  |d 130000  |d 130300  |e 130000PW128781262  |e 130300PW128781262  |k 0/130000/  |k 1/130000/130300/  |p 5  |y j 
998 |g 1235759598  |a Zimmermann, Tim  |m 1235759598:Zimmermann, Tim  |p 3 
998 |g 1235759709  |a Schwersenz, Nico  |m 1235759709:Schwersenz, Nico  |p 1  |x j 
999 |a KXP-PPN1908139099  |e 4612959795 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Schwersenz, Nico","role":"aut","family":"Schwersenz","given":"Nico"},{"given":"Victor","family":"Loaiza","role":"aut","roleDisplay":"VerfasserIn","display":"Loaiza, Victor"},{"family":"Zimmermann","given":"Tim","roleDisplay":"VerfasserIn","display":"Zimmermann, Tim","role":"aut"},{"given":"Javier","family":"Madroñero","role":"aut","display":"Madroñero, Javier","roleDisplay":"VerfasserIn"},{"family":"Wimberger","given":"Sandro","display":"Wimberger, Sandro","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation","title":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 11.11.2024"],"language":["eng"],"recId":"1908139099","name":{"displayForm":["Nico Schwersenz, Victor Loaiza, Tim Zimmermann, Javier Madroñero, Sandro Wimberger"]},"origin":[{"dateIssuedDisp":"29 March 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1016/j.cpc.2024.109192"],"eki":["1908139099"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"[Amsterdam] ; Amsterdam","dateIssuedDisp":"1969-","publisher":"Elsevier B.V. ; North Holland Publ. Co.","dateIssuedKey":"1969"}],"id":{"issn":["1879-2944"],"eki":["266014453"],"zdb":["1466511-6"]},"pubHistory":["1.1969/70 - 185.2014; Vol. 186.2015 -"],"part":{"extent":"14","text":"300(2024), Artikel-ID 109192, Seite 109192-1-109192-14","volume":"300","pages":"109192-1-109192-14","year":"2024"},"disp":"Comparison of two different integration methods for the (1+1)-dimensional Schrödinger-Poisson equationComputer physics communications","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 31.03.25"],"language":["eng"],"recId":"266014453","title":[{"subtitle":"an international journal for computational physics and physical chemistry","title":"Computer physics communications","title_sort":"Computer physics communications"}]}]} 
SRT |a SCHWERSENZCOMPARISON2920