Counting oriented trees in digraphs with large minimum semidegree

Let T be an oriented tree on n vertices with maximum degree at most eo(log⁡n). If G is a digraph on n vertices with minimum semidegree δ0(G)≥(12+o(1))n, then G contains T as a spanning tree, as recently shown by Kathapurkar and Montgomery (in fact, they only require maximum degree o(n/log⁡n)). This...

Full description

Saved in:
Bibliographic Details
Main Authors: Joos, Felix (Author) , Schrodt, Jonathan (Author)
Format: Article (Journal)
Language:English
Published: September 2024
In: Journal of combinatorial theory
Year: 2024, Volume: 168, Pages: 236-270
DOI:10.1016/j.jctb.2024.05.004
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jctb.2024.05.004
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0095895624000431
Get full text
Author Notes:Felix Joos, Jonathan Schrodt

MARC

LEADER 00000caa a2200000 c 4500
001 1908544600
003 DE-627
005 20241205220520.0
007 cr uuu---uuuuu
008 241114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jctb.2024.05.004  |2 doi 
035 |a (DE-627)1908544600 
035 |a (DE-599)KXP1908544600 
035 |a (OCoLC)1475647365 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
245 1 0 |a Counting oriented trees in digraphs with large minimum semidegree  |c Felix Joos, Jonathan Schrodt 
264 1 |c September 2024 
300 |a 35 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 29. Mai 2024 
500 |a Gesehen am 14.11.2024 
520 |a Let T be an oriented tree on n vertices with maximum degree at most eo(log⁡n). If G is a digraph on n vertices with minimum semidegree δ0(G)≥(12+o(1))n, then G contains T as a spanning tree, as recently shown by Kathapurkar and Montgomery (in fact, they only require maximum degree o(n/log⁡n)). This generalizes the corresponding result by Komlós, Sárközy and Szemerédi for graphs. We investigate the natural question how many copies of T the digraph G contains. Our main result states that every such G contains at least |Aut(T)|−1(12−o(1))nn! copies of T, which is optimal. This implies the analogous result in the undirected case. 
650 4 |a (Di)graphs 
650 4 |a Counting 
650 4 |a Spanning trees 
700 1 |a Schrodt, Jonathan  |e VerfasserIn  |0 (DE-588)1348291885  |0 (DE-627)1908545232  |4 aut 
773 0 8 |i Enthalten in  |t Journal of combinatorial theory  |d Orlando, Fla. : Academic Press, 1971  |g 168(2024) vom: Sept., Seite 236-270  |h Online-Ressource  |w (DE-627)266892426  |w (DE-600)1469158-9  |w (DE-576)104193816  |7 nnas  |a Counting oriented trees in digraphs with large minimum semidegree 
773 1 8 |g volume:168  |g year:2024  |g month:09  |g pages:236-270  |g extent:35  |a Counting oriented trees in digraphs with large minimum semidegree 
856 4 0 |u https://doi.org/10.1016/j.jctb.2024.05.004  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0095895624000431  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241114 
993 |a Article 
994 |a 2024 
998 |g 1348291885  |a Schrodt, Jonathan  |m 1348291885:Schrodt, Jonathan  |d 110000  |d 110300  |e 110000PS1348291885  |e 110300PS1348291885  |k 0/110000/  |k 1/110000/110300/  |p 2  |y j 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |d 110000  |d 110300  |e 110000PJ1075006171  |e 110300PJ1075006171  |k 0/110000/  |k 1/110000/110300/  |p 1  |x j 
999 |a KXP-PPN1908544600  |e 4614754821 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["266892426"],"zdb":["1469158-9"]},"origin":[{"publisherPlace":"Orlando, Fla.","dateIssuedDisp":"1971-","dateIssuedKey":"1971","publisher":"Academic Press"}],"recId":"266892426","language":["eng"],"disp":"Counting oriented trees in digraphs with large minimum semidegreeJournal of combinatorial theory","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 13.01.14"],"part":{"pages":"236-270","year":"2024","extent":"35","text":"168(2024) vom: Sept., Seite 236-270","volume":"168"},"titleAlt":[{"title":"Journal of combinatorial theory / B"},{"title":"JCTB"}],"pubHistory":["10.1971 - 103.2013; Vol. 104.2014 -"],"title":[{"subtitle":"JCTB","title":"Journal of combinatorial theory","title_sort":"Journal of combinatorial theory"}]}],"physDesc":[{"extent":"35 S."}],"id":{"eki":["1908544600"],"doi":["10.1016/j.jctb.2024.05.004"]},"origin":[{"dateIssuedDisp":"September 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Felix Joos, Jonathan Schrodt"]},"language":["eng"],"recId":"1908544600","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online verfügbar: 29. Mai 2024","Gesehen am 14.11.2024"],"title":[{"title":"Counting oriented trees in digraphs with large minimum semidegree","title_sort":"Counting oriented trees in digraphs with large minimum semidegree"}],"person":[{"roleDisplay":"VerfasserIn","display":"Joos, Felix","role":"aut","family":"Joos","given":"Felix"},{"display":"Schrodt, Jonathan","roleDisplay":"VerfasserIn","role":"aut","family":"Schrodt","given":"Jonathan"}]} 
SRT |a JOOSFELIXSCOUNTINGOR2024