Exact solution of the nonlinear boson diffusion equation for gluon scattering
An exact analytical solution of the nonlinear boson diffusion equation is presented. It accounts for the time evolution toward the Bose-Einstein equilibrium distribution through inelastic and elastic collisions in the case of constant transport coefficients. As a currently interesting application, g...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
July 2024
|
| In: |
Journal of statistical mechanics: theory and experiment
Year: 2024, Heft: 7, Pages: 1-16 |
| ISSN: | 1742-5468 |
| DOI: | 10.1088/1742-5468/ad5a78 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1088/1742-5468/ad5a78 Verlag, lizenzpflichtig, Volltext: https://iopscience.iop.org/article/10.1088/1742-5468/ad5a78 |
| Verfasserangaben: | L. Möhringer and G. Wolschin |
| Zusammenfassung: | An exact analytical solution of the nonlinear boson diffusion equation is presented. It accounts for the time evolution toward the Bose-Einstein equilibrium distribution through inelastic and elastic collisions in the case of constant transport coefficients. As a currently interesting application, gluon scattering in relativistic heavy-ion collisions is investigated. An estimate of the time-dependent gluon-condensate formation in overoccupied systems through number-conserving elastic scatterings in Pb-Pb collisions at relativistic energies is given. |
|---|---|
| Beschreibung: | Gesehen am 19.11.2024 |
| Beschreibung: | Online Resource |
| ISSN: | 1742-5468 |
| DOI: | 10.1088/1742-5468/ad5a78 |