Scalable stellar evolution forecasting: deep learning emulation versus hierarchical nearest-neighbor interpolation

Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population synthesis methods are based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maltsev, Kiril (VerfasserIn) , Schneider, Fabian (VerfasserIn) , Röpke, Friedrich (VerfasserIn) , Jordan, Alexander I. (VerfasserIn) , Qadir, Ghulam Abdul (VerfasserIn) , Kerzendorf, Wolfgang E. (VerfasserIn) , Riedmiller, Kai (VerfasserIn) , Smagt, Patrick van der (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 January 2024
In: Astronomy and astrophysics
Year: 2024, Jahrgang: 681, Pages: 1-21
ISSN:1432-0746
DOI:10.1051/0004-6361/202347118
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202347118
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2024/01/aa47118-23/aa47118-23.html
Volltext
Verfasserangaben:K. Maltsev, F. R. N. Schneider, F. K. Röpke, A. I. Jordan, G. A. Qadir, W. E. Kerzendorf, K. Riedmiller, P. van der Smagt

MARC

LEADER 00000caa a2200000 c 4500
001 190900684X
003 DE-627
005 20241205221616.0
007 cr uuu---uuuuu
008 241119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202347118  |2 doi 
035 |a (DE-627)190900684X 
035 |a (DE-599)KXP190900684X 
035 |a (OCoLC)1475647710 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Maltsev, Kiril  |d 1992-  |e VerfasserIn  |0 (DE-588)1280932368  |0 (DE-627)1835082580  |4 aut 
245 1 0 |a Scalable stellar evolution forecasting  |b deep learning emulation versus hierarchical nearest-neighbor interpolation  |c K. Maltsev, F. R. N. Schneider, F. K. Röpke, A. I. Jordan, G. A. Qadir, W. E. Kerzendorf, K. Riedmiller, P. van der Smagt 
264 1 |c 19 January 2024 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.11.2024 
520 |a Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art rapid population synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically over a continuous parameter range. The computational costs of running detailed stellar evolution codes, such as MESA, over wide and densely sampled parameter grids are prohibitive, while stellar-age based interpolation in-between sparsely sampled grid points leads to intolerably large systematic prediction errors. In this work, we provide two solutions for automated interpolation methods that offer satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core helium burning while covering a mass range from 0.65 to 300 M⊙. The feedforward neural network regression model (first solution) that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest-neighbor interpolation algorithm (second solution) that we hard-code to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MESA ISOCHRONES AND STELLAR TRACKS () data set, but is independent of the input stellar catalog. Finally, we discuss the prospective applications of these methods and provide guidelines for generalizing them to higher dimensional parameter spaces. 
700 1 |a Schneider, Fabian  |e VerfasserIn  |0 (DE-588)1069401307  |0 (DE-627)821861212  |0 (DE-576)42867223X  |4 aut 
700 1 |a Röpke, Friedrich  |d 1974-  |e VerfasserIn  |0 (DE-588)128587024  |0 (DE-627)376258608  |0 (DE-576)297228757  |4 aut 
700 1 |a Jordan, Alexander I.  |e VerfasserIn  |0 (DE-588)1027203264  |0 (DE-627)72857747X  |0 (DE-576)372589928  |4 aut 
700 1 |a Qadir, Ghulam Abdul  |e VerfasserIn  |4 aut 
700 1 |a Kerzendorf, Wolfgang E.  |e VerfasserIn  |4 aut 
700 1 |a Riedmiller, Kai  |d 1994-  |e VerfasserIn  |0 (DE-588)1275000878  |0 (DE-627)1826628363  |4 aut 
700 1 |a Smagt, Patrick van der  |e VerfasserIn  |0 (DE-588)1024560392  |0 (DE-627)720123011  |0 (DE-576)369027051  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 681(2024) vom: Jan., Artikel-ID A86, Seite 1-21  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Scalable stellar evolution forecasting deep learning emulation versus hierarchical nearest-neighbor interpolation 
773 1 8 |g volume:681  |g year:2024  |g month:01  |g elocationid:A86  |g pages:1-21  |g extent:21  |a Scalable stellar evolution forecasting deep learning emulation versus hierarchical nearest-neighbor interpolation 
856 4 0 |u https://doi.org/10.1051/0004-6361/202347118  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2024/01/aa47118-23/aa47118-23.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241119 
993 |a Article 
994 |a 2024 
998 |g 1275000878  |a Riedmiller, Kai  |m 1275000878:Riedmiller, Kai  |d 160000  |e 160000PR1275000878  |k 0/160000/  |p 7 
998 |g 1027203264  |a Jordan, Alexander  |m 1027203264:Jordan, Alexander  |p 4 
998 |g 128587024  |a Röpke, Friedrich  |m 128587024:Röpke, Friedrich  |d 700000  |d 714000  |d 714100  |e 700000PR128587024  |e 714000PR128587024  |e 714100PR128587024  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714100/  |p 3 
998 |g 1069401307  |a Schneider, Fabian  |m 1069401307:Schneider, Fabian  |d 700000  |d 714000  |e 700000PS1069401307  |e 714000PS1069401307  |k 0/700000/  |k 1/700000/714000/  |p 2 
998 |g 1280932368  |a Maltsev, Kiril  |m 1280932368:Maltsev, Kiril  |d 130000  |e 130000PM1280932368  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN190900684X  |e 4616481237 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"display":"Maltsev, Kiril","family":"Maltsev","role":"aut","given":"Kiril"},{"display":"Schneider, Fabian","family":"Schneider","given":"Fabian","role":"aut"},{"given":"Friedrich","role":"aut","family":"Röpke","display":"Röpke, Friedrich"},{"role":"aut","given":"Alexander I.","display":"Jordan, Alexander I.","family":"Jordan"},{"given":"Ghulam Abdul","role":"aut","family":"Qadir","display":"Qadir, Ghulam Abdul"},{"display":"Kerzendorf, Wolfgang E.","family":"Kerzendorf","given":"Wolfgang E.","role":"aut"},{"display":"Riedmiller, Kai","family":"Riedmiller","role":"aut","given":"Kai"},{"family":"Smagt","display":"Smagt, Patrick van der","given":"Patrick van der","role":"aut"}],"physDesc":[{"extent":"21 S."}],"name":{"displayForm":["K. Maltsev, F. R. N. Schneider, F. K. Röpke, A. I. Jordan, G. A. Qadir, W. E. Kerzendorf, K. Riedmiller, P. van der Smagt"]},"relHost":[{"language":["eng"],"part":{"text":"681(2024) vom: Jan., Artikel-ID A86, Seite 1-21","extent":"21","volume":"681","pages":"1-21","year":"2024"},"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"corporate":[{"display":"European Southern Observatory","role":"isb"}],"recId":"253390222","physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["European Southern Observatory (ESO)"]},"id":{"zdb":["1458466-9"],"issn":["1432-0746"],"eki":["253390222"]},"title":[{"title":"Astronomy and astrophysics","subtitle":"an international weekly journal","title_sort":"Astronomy and astrophysics"}],"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"origin":[{"dateIssuedDisp":"1969-","publisher":"EDP Sciences ; Springer","dateIssuedKey":"1969","publisherPlace":"Les Ulis ; Berlin ; Heidelberg"}],"pubHistory":["1.1969 -"],"disp":"Scalable stellar evolution forecasting deep learning emulation versus hierarchical nearest-neighbor interpolationAstronomy and astrophysics","type":{"media":"Online-Ressource","bibl":"periodical"}}],"recId":"190900684X","id":{"eki":["190900684X"],"doi":["10.1051/0004-6361/202347118"]},"title":[{"title_sort":"Scalable stellar evolution forecasting","subtitle":"deep learning emulation versus hierarchical nearest-neighbor interpolation","title":"Scalable stellar evolution forecasting"}],"note":["Gesehen am 19.11.2024"],"origin":[{"dateIssuedDisp":"19 January 2024","dateIssuedKey":"2024"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a MALTSEVKIRSCALABLEST1920