On pattern-avoiding permutons

The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order k\ k \ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garbe, Frederik (VerfasserIn) , Hladký, Jan (VerfasserIn) , Kun, Gábor (VerfasserIn) , Pekárková, Kristýna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 January 2024
In: Random structures & algorithms
Year: 2024, Jahrgang: 65, Heft: 1, Pages: 46-60
ISSN:1098-2418
DOI:10.1002/rsa.21208
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/rsa.21208
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.21208
Volltext
Verfasserangaben:Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková
Beschreibung
Zusammenfassung:The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order k\ k \ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most (k−1)\ łeft(k-1\right) \ many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”
Beschreibung:Gesehen am 21.11.2024
Beschreibung:Online Resource
ISSN:1098-2418
DOI:10.1002/rsa.21208