A machine learning and directed network optimization approach to uncover TP53 regulatory patterns

TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53 from transcriptomic data, and directed regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Triantafyllidis, Charalampos P. (VerfasserIn) , Barberis, Alessandro (VerfasserIn) , Hartley, Fiona (VerfasserIn) , Cuervo, Ana Miar (VerfasserIn) , Gjerga, Enio (VerfasserIn) , Charlton, Philip (VerfasserIn) , van Bijsterveldt, Linda (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Buffa, Francesca M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 December 2023
In: iScience
Year: 2023, Jahrgang: 26, Heft: 12, Pages: 1-19
ISSN:2589-0042
DOI:10.1016/j.isci.2023.108291
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.isci.2023.108291
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2589004223023684
Volltext
Verfasserangaben:Charalampos P. Triantafyllidis, Alessandro Barberis, Fiona Hartley, Ana Miar Cuervo, Enio Gjerga, Philip Charlton, Linda van Bijsterveldt, Julio Saez Rodriguez, Francesca M. Buffa

MARC

LEADER 00000caa a2200000 c 4500
001 1909382698
003 DE-627
005 20241205222158.0
007 cr uuu---uuuuu
008 241122s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isci.2023.108291  |2 doi 
035 |a (DE-627)1909382698 
035 |a (DE-599)KXP1909382698 
035 |a (OCoLC)1475647891 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Triantafyllidis, Charalampos P.  |e VerfasserIn  |0 (DE-588)1349028347  |0 (DE-627)1909384208  |4 aut 
245 1 2 |a A machine learning and directed network optimization approach to uncover TP53 regulatory patterns  |c Charalampos P. Triantafyllidis, Alessandro Barberis, Fiona Hartley, Ana Miar Cuervo, Enio Gjerga, Philip Charlton, Linda van Bijsterveldt, Julio Saez Rodriguez, Francesca M. Buffa 
264 1 |c 15 December 2023 
300 |b Illustrationen, Diagramme 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 26. Oktober 2022, Artikelversion: 17. November 2023 
500 |a Gesehen am 22.11.2024 
520 |a TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53 from transcriptomic data, and directed regulatory networks to reconstruct the effect of mutations on the transcipt levels of TP53 targets. Using data from established databases (Cancer Cell Line Encyclopedia, The Cancer Genome Atlas), machine learning could predict the mutation status, but not resolve different mutations. On the contrary, directed network optimization allowed to infer the TP53 regulatory profile across: (1) mutations, (2) irradiation in lung cancer, and (3) hypoxia in breast cancer, and we could observe differential regulatory profiles dictated by (1) mutation type, (2) deleterious consequences of the mutation, (3) known hotspots, (4) protein changes, (5) stress condition (irradiation/hypoxia). This is an important first step toward using regulatory networks for the characterization of the functional consequences of mutations, and could be extended to other perturbations, with implications for drug design and precision medicine. 
650 4 |a cancer systems biology 
650 4 |a causal inference 
650 4 |a directed networks 
650 4 |a machine learning 
650 4 |a mutations 
650 4 |a Regulatory networks 
650 4 |a regulon 
650 4 |a TP53 
650 4 |a trascriptomics 
700 1 |a Barberis, Alessandro  |e VerfasserIn  |4 aut 
700 1 |a Hartley, Fiona  |e VerfasserIn  |4 aut 
700 1 |a Cuervo, Ana Miar  |e VerfasserIn  |4 aut 
700 1 |a Gjerga, Enio  |e VerfasserIn  |0 (DE-588)1207289779  |0 (DE-627)1693485303  |4 aut 
700 1 |a Charlton, Philip  |e VerfasserIn  |4 aut 
700 1 |a van Bijsterveldt, Linda  |e VerfasserIn  |4 aut 
700 1 |a Sáez Rodríguez, Julio  |d 1978-  |e VerfasserIn  |0 (DE-588)133764362  |0 (DE-627)555766632  |0 (DE-576)300083114  |4 aut 
700 1 |a Buffa, Francesca M.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t iScience  |d Amsterdam : Elsevier, 2018  |g 26(2023), 12, Artikel-ID 108291, Seite 1-19  |h Online-Ressource  |w (DE-627)1019532106  |w (DE-600)2927064-9  |w (DE-576)502115858  |x 2589-0042  |7 nnas  |a A machine learning and directed network optimization approach to uncover TP53 regulatory patterns 
773 1 8 |g volume:26  |g year:2023  |g number:12  |g elocationid:108291  |g pages:1-19  |g extent:19  |a A machine learning and directed network optimization approach to uncover TP53 regulatory patterns 
856 4 0 |u https://doi.org/10.1016/j.isci.2023.108291  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589004223023684  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241122 
993 |a Article 
994 |a 2023 
998 |g 133764362  |a Sáez Rodríguez, Julio  |m 133764362:Sáez Rodríguez, Julio  |d 910000  |d 912900  |e 910000PS133764362  |e 912900PS133764362  |k 0/910000/  |k 1/910000/912900/  |p 8 
998 |g 1207289779  |a Gjerga, Enio  |m 1207289779:Gjerga, Enio  |d 910000  |d 910100  |e 910000PG1207289779  |e 910100PG1207289779  |k 0/910000/  |k 1/910000/910100/  |p 5 
999 |a KXP-PPN1909382698  |e 4621219170 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","given":"Charalampos P.","display":"Triantafyllidis, Charalampos P.","family":"Triantafyllidis"},{"family":"Barberis","display":"Barberis, Alessandro","given":"Alessandro","role":"aut"},{"given":"Fiona","role":"aut","family":"Hartley","display":"Hartley, Fiona"},{"role":"aut","given":"Ana Miar","family":"Cuervo","display":"Cuervo, Ana Miar"},{"given":"Enio","role":"aut","display":"Gjerga, Enio","family":"Gjerga"},{"role":"aut","given":"Philip","display":"Charlton, Philip","family":"Charlton"},{"family":"van Bijsterveldt","display":"van Bijsterveldt, Linda","given":"Linda","role":"aut"},{"given":"Julio","role":"aut","display":"Sáez Rodríguez, Julio","family":"Sáez Rodríguez"},{"display":"Buffa, Francesca M.","family":"Buffa","given":"Francesca M.","role":"aut"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"A machine learning and directed network optimization approach to uncover TP53 regulatory patterns","title_sort":"machine learning and directed network optimization approach to uncover TP53 regulatory patterns"}],"note":["Online verfügbar: 26. Oktober 2022, Artikelversion: 17. November 2023","Gesehen am 22.11.2024"],"origin":[{"dateIssuedDisp":"15 December 2023","dateIssuedKey":"2023"}],"id":{"eki":["1909382698"],"doi":["10.1016/j.isci.2023.108291"]},"relHost":[{"part":{"pages":"1-19","year":"2023","issue":"12","text":"26(2023), 12, Artikel-ID 108291, Seite 1-19","extent":"19","volume":"26"},"language":["eng"],"id":{"eki":["1019532106"],"zdb":["2927064-9"],"issn":["2589-0042"]},"recId":"1019532106","physDesc":[{"extent":"Online-Ressource"}],"disp":"A machine learning and directed network optimization approach to uncover TP53 regulatory patternsiScience","type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"[2018]-","publisher":"Elsevier","publisherPlace":"Amsterdam ; Boston ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis"}],"note":["Gesehen am 11.09.2018"],"pubHistory":["Volume 1 (March 23, 2018)-"],"title":[{"title_sort":"iScience","title":"iScience"}]}],"recId":"1909382698","physDesc":[{"extent":"19 S.","noteIll":"Illustrationen, Diagramme"}],"name":{"displayForm":["Charalampos P. Triantafyllidis, Alessandro Barberis, Fiona Hartley, Ana Miar Cuervo, Enio Gjerga, Philip Charlton, Linda van Bijsterveldt, Julio Saez Rodriguez, Francesca M. Buffa"]}} 
SRT |a TRIANTAFYLMACHINELEA1520