Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems
We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy o...
Gespeichert in:
| Hauptverfasser: | , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
3 May 2024
|
| In: |
Journal of scientific computing
Year: 2024, Jahrgang: 99, Heft: 3, Pages: 77-1-77-34 |
| ISSN: | 1573-7691 |
| DOI: | 10.1007/s10915-024-02539-9 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-024-02539-9 |
| Verfasserangaben: | Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1909444677 | ||
| 003 | DE-627 | ||
| 005 | 20241205222518.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241125s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10915-024-02539-9 |2 doi | |
| 035 | |a (DE-627)1909444677 | ||
| 035 | |a (DE-599)KXP1909444677 | ||
| 035 | |a (OCoLC)1475647935 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Cui, Tiangang |e VerfasserIn |0 (DE-588)1333250436 |0 (DE-627)1891362518 |4 aut | |
| 245 | 1 | 0 | |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems |c Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl |
| 264 | 1 | |c 3 May 2024 | |
| 300 | |a 34 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.11.2024 | ||
| 520 | |a We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy of increasingly finer meshes. For the discretized, algebraic eigenproblems we use both the Rayleigh quotient (RQ) iteration and implicitly restarted Arnoldi (IRA), providing an analysis of the cost in each case. By studying the variance on each level and adapting classical FE error bounds to the stochastic setting, we are able to bound the total error of our MLMC estimator and provide a complexity analysis. As expected, the complexity bound for our MLMC estimator is superior to plain Monte Carlo. To improve the efficiency of the MLMC further, we exploit the hierarchy of meshes and use coarser approximations as starting values for the eigensolvers on finer ones. To improve the stability of the MLMC method for convection-dominated problems, we employ two additional strategies. First, we consider the streamline upwind Petrov-Galerkin formulation of the discrete eigenvalue problem, which allows us to start the MLMC method on coarser meshes than is possible with standard FEs. Second, we apply a homotopy method to add stability to the eigensolver for each sample. Finally, we present a multilevel quasi-Monte Carlo method that replaces Monte Carlo with a quasi-Monte Carlo (QMC) rule on each level. Due to the faster convergence of QMC, this improves the overall complexity. We provide detailed numerical results comparing our different strategies to demonstrate the practical feasibility of the MLMC method in different use cases. The results support our complexity analysis and further demonstrate the superiority over plain Monte Carlo in all cases. | ||
| 650 | 4 | |a Convection-diffusion eigenvalue problems | |
| 650 | 4 | |a Homotopy | |
| 650 | 4 | |a Multilevel Monte Carlo | |
| 650 | 4 | |a Uncertainty quantification | |
| 700 | 1 | |a De Sterck, H. |e VerfasserIn |0 (DE-588)1066441235 |0 (DE-627)817546545 |0 (DE-576)425859290 |4 aut | |
| 700 | 1 | |a Gilbert, Alexander |e VerfasserIn |0 (DE-588)1180547047 |0 (DE-627)1067775641 |0 (DE-576)520275241 |4 aut | |
| 700 | 1 | |a Polishchuk, Stanislav |e VerfasserIn |4 aut | |
| 700 | 1 | |a Scheichl, Robert |d 1972- |e VerfasserIn |0 (DE-588)1173753842 |0 (DE-627)1043602305 |0 (DE-576)515668532 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of scientific computing |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986 |g 99(2024), 3, Artikel-ID 77, Seite 77-1-77-34 |h Online-Ressource |w (DE-627)317878395 |w (DE-600)2017260-6 |w (DE-576)121466221 |x 1573-7691 |7 nnas |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems |
| 773 | 1 | 8 | |g volume:99 |g year:2024 |g number:3 |g elocationid:77 |g pages:77-1-77-34 |g extent:34 |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10915-024-02539-9 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241125 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1173753842 |a Scheichl, Robert |m 1173753842:Scheichl, Robert |d 110000 |d 110400 |e 110000PS1173753842 |e 110400PS1173753842 |k 0/110000/ |k 1/110000/110400/ |p 5 |y j | ||
| 999 | |a KXP-PPN1909444677 |e 462210766X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"3 May 2024"}],"note":["Gesehen am 25.11.2024"],"physDesc":[{"extent":"34 S."}],"person":[{"display":"Cui, Tiangang","role":"aut","given":"Tiangang","family":"Cui"},{"family":"De Sterck","given":"H.","role":"aut","display":"De Sterck, H."},{"given":"Alexander","family":"Gilbert","display":"Gilbert, Alexander","role":"aut"},{"family":"Polishchuk","given":"Stanislav","role":"aut","display":"Polishchuk, Stanislav"},{"display":"Scheichl, Robert","role":"aut","family":"Scheichl","given":"Robert"}],"title":[{"title_sort":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems","title":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems"}],"relHost":[{"recId":"317878395","pubHistory":["1.1986 -"],"id":{"issn":["1573-7691"],"eki":["317878395"],"zdb":["2017260-6"]},"note":["Gesehen am 01.11.05"],"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedKey":"1986","publisherPlace":"New York, NY [u.a.] ; London [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problemsJournal of scientific computing","language":["eng"],"title":[{"title_sort":"Journal of scientific computing","title":"Journal of scientific computing"}],"part":{"volume":"99","year":"2024","extent":"34","pages":"77-1-77-34","text":"99(2024), 3, Artikel-ID 77, Seite 77-1-77-34","issue":"3"}}],"name":{"displayForm":["Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1909444677","id":{"doi":["10.1007/s10915-024-02539-9"],"eki":["1909444677"]}} | ||
| SRT | |a CUITIANGANMULTILEVEL3202 | ||