Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems

We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cui, Tiangang (VerfasserIn) , De Sterck, H. (VerfasserIn) , Gilbert, Alexander (VerfasserIn) , Polishchuk, Stanislav (VerfasserIn) , Scheichl, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 May 2024
In: Journal of scientific computing
Year: 2024, Jahrgang: 99, Heft: 3, Pages: 77-1-77-34
ISSN:1573-7691
DOI:10.1007/s10915-024-02539-9
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-024-02539-9
Volltext
Verfasserangaben:Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl

MARC

LEADER 00000caa a2200000 c 4500
001 1909444677
003 DE-627
005 20241205222518.0
007 cr uuu---uuuuu
008 241125s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-024-02539-9  |2 doi 
035 |a (DE-627)1909444677 
035 |a (DE-599)KXP1909444677 
035 |a (OCoLC)1475647935 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cui, Tiangang  |e VerfasserIn  |0 (DE-588)1333250436  |0 (DE-627)1891362518  |4 aut 
245 1 0 |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems  |c Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl 
264 1 |c 3 May 2024 
300 |a 34 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.11.2024 
520 |a We develop new multilevel Monte Carlo (MLMC) methods to estimate the expectation of the smallest eigenvalue of a stochastic convection-diffusion operator with random coefficients. The MLMC method is based on a sequence of finite element (FE) discretizations of the eigenvalue problem on a hierarchy of increasingly finer meshes. For the discretized, algebraic eigenproblems we use both the Rayleigh quotient (RQ) iteration and implicitly restarted Arnoldi (IRA), providing an analysis of the cost in each case. By studying the variance on each level and adapting classical FE error bounds to the stochastic setting, we are able to bound the total error of our MLMC estimator and provide a complexity analysis. As expected, the complexity bound for our MLMC estimator is superior to plain Monte Carlo. To improve the efficiency of the MLMC further, we exploit the hierarchy of meshes and use coarser approximations as starting values for the eigensolvers on finer ones. To improve the stability of the MLMC method for convection-dominated problems, we employ two additional strategies. First, we consider the streamline upwind Petrov-Galerkin formulation of the discrete eigenvalue problem, which allows us to start the MLMC method on coarser meshes than is possible with standard FEs. Second, we apply a homotopy method to add stability to the eigensolver for each sample. Finally, we present a multilevel quasi-Monte Carlo method that replaces Monte Carlo with a quasi-Monte Carlo (QMC) rule on each level. Due to the faster convergence of QMC, this improves the overall complexity. We provide detailed numerical results comparing our different strategies to demonstrate the practical feasibility of the MLMC method in different use cases. The results support our complexity analysis and further demonstrate the superiority over plain Monte Carlo in all cases. 
650 4 |a Convection-diffusion eigenvalue problems 
650 4 |a Homotopy 
650 4 |a Multilevel Monte Carlo 
650 4 |a Uncertainty quantification 
700 1 |a De Sterck, H.  |e VerfasserIn  |0 (DE-588)1066441235  |0 (DE-627)817546545  |0 (DE-576)425859290  |4 aut 
700 1 |a Gilbert, Alexander  |e VerfasserIn  |0 (DE-588)1180547047  |0 (DE-627)1067775641  |0 (DE-576)520275241  |4 aut 
700 1 |a Polishchuk, Stanislav  |e VerfasserIn  |4 aut 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 99(2024), 3, Artikel-ID 77, Seite 77-1-77-34  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems 
773 1 8 |g volume:99  |g year:2024  |g number:3  |g elocationid:77  |g pages:77-1-77-34  |g extent:34  |a Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems 
856 4 0 |u https://doi.org/10.1007/s10915-024-02539-9  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241125 
993 |a Article 
994 |a 2024 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110400  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110400/  |p 5  |y j 
999 |a KXP-PPN1909444677  |e 462210766X 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"3 May 2024"}],"note":["Gesehen am 25.11.2024"],"physDesc":[{"extent":"34 S."}],"person":[{"display":"Cui, Tiangang","role":"aut","given":"Tiangang","family":"Cui"},{"family":"De Sterck","given":"H.","role":"aut","display":"De Sterck, H."},{"given":"Alexander","family":"Gilbert","display":"Gilbert, Alexander","role":"aut"},{"family":"Polishchuk","given":"Stanislav","role":"aut","display":"Polishchuk, Stanislav"},{"display":"Scheichl, Robert","role":"aut","family":"Scheichl","given":"Robert"}],"title":[{"title_sort":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems","title":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problems"}],"relHost":[{"recId":"317878395","pubHistory":["1.1986 -"],"id":{"issn":["1573-7691"],"eki":["317878395"],"zdb":["2017260-6"]},"note":["Gesehen am 01.11.05"],"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedKey":"1986","publisherPlace":"New York, NY [u.a.] ; London [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Multilevel Monte Carlo methods for stochastic convection-diffusion eigenvalue problemsJournal of scientific computing","language":["eng"],"title":[{"title_sort":"Journal of scientific computing","title":"Journal of scientific computing"}],"part":{"volume":"99","year":"2024","extent":"34","pages":"77-1-77-34","text":"99(2024), 3, Artikel-ID 77, Seite 77-1-77-34","issue":"3"}}],"name":{"displayForm":["Tiangang Cui, Hans De Sterck, Alexander D. Gilbert, Stanislav Polishchuk, Robert Scheichl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1909444677","id":{"doi":["10.1007/s10915-024-02539-9"],"eki":["1909444677"]}} 
SRT |a CUITIANGANMULTILEVEL3202