Artificial intelligence-based emphysema quantification in routine chest computed tomography: correlation with spirometry and visual emphysema grading

Objective - The aim of the study is to assess the correlation between artificial intelligence (AI)-based low attenuation volume percentage (LAV%) with forced expiratory volume in the first second to forced vital capacity (FEV1/FVC) and visual emphysema grades in routine chest computed tomography (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wiedbrauck, Damian (VerfasserIn) , Karczewski, Maciej (VerfasserIn) , Schönberg, Stefan (VerfasserIn) , Fink, Christian (VerfasserIn) , Kayed, Hany (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5/6 2024
In: Journal of computer assisted tomography
Year: 2024, Jahrgang: 48, Heft: 3, Pages: 388-393
ISSN:1532-3145
DOI:10.1097/RCT.0000000000001572
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1097/RCT.0000000000001572
Verlag, lizenzpflichtig, Volltext: https://journals.lww.com/jcat/abstract/2024/05000/artificial_intelligence_based_emphysema.7.aspx
Volltext
Verfasserangaben:Damian Wiedbrauck MD, Maciej Karczewski MSc, Stefan O. Schoenberg MD, Christian Fink MD, Hany Kayed MD

MARC

LEADER 00000caa a22000002c 4500
001 1909505285
003 DE-627
005 20241220171149.0
007 cr uuu---uuuuu
008 241126s2024 xx |||||o 00| ||eng c
024 7 |a 10.1097/RCT.0000000000001572  |2 doi 
035 |a (DE-627)1909505285 
035 |a (DE-599)KXP1909505285 
035 |a (OCoLC)1475647920 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wiedbrauck, Damian  |d 1996-  |e VerfasserIn  |0 (DE-588)1326192175  |0 (DE-627)1885805977  |4 aut 
245 1 0 |a Artificial intelligence-based emphysema quantification in routine chest computed tomography  |b correlation with spirometry and visual emphysema grading  |c Damian Wiedbrauck MD, Maciej Karczewski MSc, Stefan O. Schoenberg MD, Christian Fink MD, Hany Kayed MD 
264 1 |c 5/6 2024 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.11.2024 
520 |a Objective - The aim of the study is to assess the correlation between artificial intelligence (AI)-based low attenuation volume percentage (LAV%) with forced expiratory volume in the first second to forced vital capacity (FEV1/FVC) and visual emphysema grades in routine chest computed tomography (CT). Furthermore, optimal LAV% cutoff values for predicting a FEV1/FVC < 70% or moderate to more extensive visual emphysema grades were calculated. - Methods - In a retrospective study of 298 consecutive patients who underwent routine chest CT and spirometry examinations, LAV% was quantified using an AI-based software with a threshold < −950 HU. The FEV1/FVC was derived from spirometry, with FEV1/FVC < 70% indicating airway obstruction. The mean time interval of CT from spirometry was 3.87 ± 4.78 days. Severity of emphysema was visually graded by an experienced chest radiologist using an established 5-grade ordinal scale (Fleischner Society classification system). Spearman correlation coefficient between LAV% and FEV1/FVC was calculated. Receiver operating characteristic determined the optimal LAV% cutoff values for predicting a FEV1/FVC < 70% or a visual emphysema grade of moderate or higher (Fleischner grade 3-5). - Results - Significant correlation between LAV% and FEV1/FVC was found (ϱ = −0.477, P < 0.001). Increasing LAV% corresponded to higher visual emphysema grades. For patients with absent visual emphysema, mean LAV% was 2.98 ± 3.30, for patients with trace emphysema 3.22 ± 2.75, for patients with mild emphysema 3.90 ± 3.33, for patients with moderate emphysema 6.41 ± 3.46, for patients with confluent emphysema 9.02 ± 5.45, and for patients with destructive emphysema 16.90 ± 8.19. Optimal LAV% cutoff value for predicting a FEV1/FVC < 70 was 6.1 (area under the curve = 0.764, sensitivity = 0.773, specificity = 0.665), while for predicting a visual emphysema grade of moderate or higher, it was 4.7 (area under the curve = 0.802, sensitivity = 0.766, specificity = 0.742). Furthermore, correlation between visual emphysema grading and FEV1/FVC was found. In patients with FEV1/FVC < 70% a high proportion of subjects had emphysema grade 3 (moderate) or higher, whereas in patients with FEV1/FVC ≥ 70%, a larger proportion had emphysema grade 3 (moderate) or lower. The sensitivity for visual emphysema grading predicting a FEV1/FVC < 70% was 56.3% with an optimal cutoff point at a visual grade of 4 (confluent), demonstrating a lower sensitivity compared with LAV% (77.3%). - Conclusions - A significant correlation between AI-based LAV% and FEV1/FVC as well as visual CT emphysema grades can be found in routine chest CT suggesting that AI-based LAV% measurement might be integrated as an add-on functional parameter in the evaluation of chest CT in the future. 
700 1 |a Karczewski, Maciej  |e VerfasserIn  |4 aut 
700 1 |a Schönberg, Stefan  |d 1969-  |e VerfasserIn  |0 (DE-588)131557912  |0 (DE-627)510700624  |0 (DE-576)298584891  |4 aut 
700 1 |a Fink, Christian  |d 1971-  |e VerfasserIn  |0 (DE-588)121198014  |0 (DE-627)705299767  |0 (DE-576)292581882  |4 aut 
700 1 |a Kayed, Hany  |d 1970-  |e VerfasserIn  |0 (DE-588)129878472  |0 (DE-627)482373989  |0 (DE-576)297883089  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computer assisted tomography  |d Philadelphia, Pa. : Lippincott Williams & Wilkins, 1977  |g 48(2024), 3, Seite 388-393  |h Online-Ressource  |w (DE-627)325789649  |w (DE-600)2039772-0  |w (DE-576)094425647  |x 1532-3145  |7 nnas  |a Artificial intelligence-based emphysema quantification in routine chest computed tomography correlation with spirometry and visual emphysema grading 
773 1 8 |g volume:48  |g year:2024  |g number:3  |g pages:388-393  |g extent:6  |a Artificial intelligence-based emphysema quantification in routine chest computed tomography correlation with spirometry and visual emphysema grading 
856 4 0 |u https://doi.org/10.1097/RCT.0000000000001572  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.lww.com/jcat/abstract/2024/05000/artificial_intelligence_based_emphysema.7.aspx  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241126 
993 |a Article 
994 |a 2024 
998 |g 129878472  |a Kayed, Hany  |m 129878472:Kayed, Hany  |d 60000  |d 62900  |e 60000PK129878472  |e 62900PK129878472  |k 0/60000/  |k 1/60000/62900/  |p 5  |y j 
998 |g 121198014  |a Fink, Christian  |m 121198014:Fink, Christian  |d 60000  |e 60000PF121198014  |k 0/60000/  |p 4 
998 |g 131557912  |a Schönberg, Stefan  |m 131557912:Schönberg, Stefan  |d 60000  |d 62900  |e 60000PS131557912  |e 62900PS131557912  |k 0/60000/  |k 1/60000/62900/  |p 3 
998 |g 1326192175  |a Wiedbrauck, Damian  |m 1326192175:Wiedbrauck, Damian  |d 60000  |e 60000PW1326192175  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1909505285  |e 4622293145 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"325789649","titleAlt":[{"title":"JCAT"}],"language":["eng"],"id":{"eki":["325789649"],"zdb":["2039772-0"],"issn":["1532-3145"]},"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 28.05.19"],"title":[{"title_sort":"Journal of computer assisted tomography","title":"Journal of computer assisted tomography","subtitle":"JCAT"}],"origin":[{"publisher":"Lippincott Williams & Wilkins ; Ovid","dateIssuedDisp":"1977-","publisherPlace":"Philadelphia, Pa. ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1977"}],"disp":"Artificial intelligence-based emphysema quantification in routine chest computed tomography correlation with spirometry and visual emphysema gradingJournal of computer assisted tomography","pubHistory":["1.1977 -"],"part":{"pages":"388-393","volume":"48","extent":"6","issue":"3","text":"48(2024), 3, Seite 388-393","year":"2024"}}],"name":{"displayForm":["Damian Wiedbrauck MD, Maciej Karczewski MSc, Stefan O. Schoenberg MD, Christian Fink MD, Hany Kayed MD"]},"origin":[{"dateIssuedDisp":"5/6 2024","dateIssuedKey":"2024"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Artificial intelligence-based emphysema quantification in routine chest computed tomography","subtitle":"correlation with spirometry and visual emphysema grading","title":"Artificial intelligence-based emphysema quantification in routine chest computed tomography"}],"person":[{"given":"Damian","role":"aut","family":"Wiedbrauck","display":"Wiedbrauck, Damian","roleDisplay":"VerfasserIn"},{"given":"Maciej","role":"aut","roleDisplay":"VerfasserIn","display":"Karczewski, Maciej","family":"Karczewski"},{"role":"aut","given":"Stefan","display":"Schönberg, Stefan","family":"Schönberg","roleDisplay":"VerfasserIn"},{"role":"aut","given":"Christian","family":"Fink","display":"Fink, Christian","roleDisplay":"VerfasserIn"},{"given":"Hany","role":"aut","display":"Kayed, Hany","family":"Kayed","roleDisplay":"VerfasserIn"}],"note":["Gesehen am 26.11.2024"],"recId":"1909505285","physDesc":[{"extent":"6 S."}],"language":["eng"],"id":{"eki":["1909505285"],"doi":["10.1097/RCT.0000000000001572"]}} 
SRT |a WIEDBRAUCKARTIFICIAL5620