Reflection length at infinity in hyperbolic reflection groups

In a discrete group generated by hyperplane reflections in the 𝑛-dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a d...

Full description

Saved in:
Bibliographic Details
Main Author: Lotz, Marco (Author)
Format: Article (Journal)
Language:English
Published: 26. Juli 2024
In: Expert review of medical devices
Year: 2024, Pages: 1-23
ISSN:1745-2422
DOI:10.1515/jgth-2023-0073
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/jgth-2023-0073
Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0073/html
Get full text
Author Notes:Marco Lotz

MARC

LEADER 00000caa a22000002c 4500
001 1909865885
003 DE-627
005 20250530003454.0
007 cr uuu---uuuuu
008 241128s2024 xx |||||o 00| ||eng c
024 7 |a 10.1515/jgth-2023-0073  |2 doi 
035 |a (DE-627)1909865885 
035 |a (DE-599)KXP1909865885 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lotz, Marco  |d 1995-  |e VerfasserIn  |0 (DE-588)1349670383  |0 (DE-627)1909870803  |4 aut 
245 1 0 |a Reflection length at infinity in hyperbolic reflection groups  |c Marco Lotz 
264 1 |c 26. Juli 2024 
300 |b Illustrationen 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.11.2024 
520 |a In a discrete group generated by hyperplane reflections in the -dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a direct product of spherical and affine reflection groups, the reflection length is unbounded. The action of the Coxeter group induces a tessellation of the hyperbolic space. After fixing a fundamental domain, there exists a bijection between the tiles and the group elements. We describe certain points in the visual boundary of the -dimensional hyperbolic space for which every neighbourhood contains tiles of every reflection length. To prove this, we show that two disjoint hyperplanes in the -dimensional hyperbolic space without common boundary points have a unique common perpendicular. 
773 0 8 |i Enthalten in  |t Expert review of medical devices  |d Abingdon : Taylor & Francis Group, 2004  |g (2024), ahead of print, Seite 1-23  |h Online-Ressource  |w (DE-627)471684031  |w (DE-600)2167175-8  |w (DE-576)280458258  |x 1745-2422  |7 nnas  |a Reflection length at infinity in hyperbolic reflection groups 
773 1 8 |g year:2024  |g pages:1-23  |g extent:23  |a Reflection length at infinity in hyperbolic reflection groups 
856 4 0 |u https://doi.org/10.1515/jgth-2023-0073  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0073/html  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241128 
993 |a Article 
994 |a 2024 
998 |g 1349670383  |a Lotz, Marco  |m 1349670383:Lotz, Marco  |d 110000  |d 110400  |e 110000PL1349670383  |e 110400PL1349670383  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1909865885  |e 4624703634 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"26. Juli 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1515/jgth-2023-0073"],"eki":["1909865885"]},"name":{"displayForm":["Marco Lotz"]},"physDesc":[{"extent":"23 S.","noteIll":"Illustrationen"}],"relHost":[{"part":{"text":"(2024), ahead of print, Seite 1-23","extent":"23","year":"2024","pages":"1-23"},"pubHistory":["1.2004 -"],"language":["eng"],"recId":"471684031","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 09.09.15"],"disp":"Reflection length at infinity in hyperbolic reflection groupsExpert review of medical devices","title":[{"title":"Expert review of medical devices","title_sort":"Expert review of medical devices"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["471684031"],"zdb":["2167175-8"],"issn":["1745-2422"]},"origin":[{"dateIssuedDisp":"2004-","publisher":"Taylor & Francis Group ; Future Drugs ; Expert Reviews ; Informa Healthcare","dateIssuedKey":"2004","publisherPlace":"Abingdon ; London ; London ; London"}]}],"title":[{"title_sort":"Reflection length at infinity in hyperbolic reflection groups","title":"Reflection length at infinity in hyperbolic reflection groups"}],"person":[{"role":"aut","display":"Lotz, Marco","roleDisplay":"VerfasserIn","given":"Marco","family":"Lotz"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.11.2024"],"recId":"1909865885","language":["eng"]} 
SRT |a LOTZMARCOREFLECTION2620