Reflection length at infinity in hyperbolic reflection groups
In a discrete group generated by hyperplane reflections in the 𝑛-dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a d...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
26. Juli 2024
|
| In: |
Expert review of medical devices
Year: 2024, Pages: 1-23 |
| ISSN: | 1745-2422 |
| DOI: | 10.1515/jgth-2023-0073 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1515/jgth-2023-0073 Verlag, lizenzpflichtig, Volltext: https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0073/html |
| Author Notes: | Marco Lotz |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1909865885 | ||
| 003 | DE-627 | ||
| 005 | 20250530003454.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241128s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1515/jgth-2023-0073 |2 doi | |
| 035 | |a (DE-627)1909865885 | ||
| 035 | |a (DE-599)KXP1909865885 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Lotz, Marco |d 1995- |e VerfasserIn |0 (DE-588)1349670383 |0 (DE-627)1909870803 |4 aut | |
| 245 | 1 | 0 | |a Reflection length at infinity in hyperbolic reflection groups |c Marco Lotz |
| 264 | 1 | |c 26. Juli 2024 | |
| 300 | |b Illustrationen | ||
| 300 | |a 23 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.11.2024 | ||
| 520 | |a In a discrete group generated by hyperplane reflections in the -dimensional hyperbolic space, the reflection length of an element is the minimal number of hyperplane reflections in the group that suffices to factor the element. For a Coxeter group that arises in this way and does not split into a direct product of spherical and affine reflection groups, the reflection length is unbounded. The action of the Coxeter group induces a tessellation of the hyperbolic space. After fixing a fundamental domain, there exists a bijection between the tiles and the group elements. We describe certain points in the visual boundary of the -dimensional hyperbolic space for which every neighbourhood contains tiles of every reflection length. To prove this, we show that two disjoint hyperplanes in the -dimensional hyperbolic space without common boundary points have a unique common perpendicular. | ||
| 773 | 0 | 8 | |i Enthalten in |t Expert review of medical devices |d Abingdon : Taylor & Francis Group, 2004 |g (2024), ahead of print, Seite 1-23 |h Online-Ressource |w (DE-627)471684031 |w (DE-600)2167175-8 |w (DE-576)280458258 |x 1745-2422 |7 nnas |a Reflection length at infinity in hyperbolic reflection groups |
| 773 | 1 | 8 | |g year:2024 |g pages:1-23 |g extent:23 |a Reflection length at infinity in hyperbolic reflection groups |
| 856 | 4 | 0 | |u https://doi.org/10.1515/jgth-2023-0073 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0073/html |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241128 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1349670383 |a Lotz, Marco |m 1349670383:Lotz, Marco |d 110000 |d 110400 |e 110000PL1349670383 |e 110400PL1349670383 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1909865885 |e 4624703634 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"26. Juli 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1515/jgth-2023-0073"],"eki":["1909865885"]},"name":{"displayForm":["Marco Lotz"]},"physDesc":[{"extent":"23 S.","noteIll":"Illustrationen"}],"relHost":[{"part":{"text":"(2024), ahead of print, Seite 1-23","extent":"23","year":"2024","pages":"1-23"},"pubHistory":["1.2004 -"],"language":["eng"],"recId":"471684031","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 09.09.15"],"disp":"Reflection length at infinity in hyperbolic reflection groupsExpert review of medical devices","title":[{"title":"Expert review of medical devices","title_sort":"Expert review of medical devices"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["471684031"],"zdb":["2167175-8"],"issn":["1745-2422"]},"origin":[{"dateIssuedDisp":"2004-","publisher":"Taylor & Francis Group ; Future Drugs ; Expert Reviews ; Informa Healthcare","dateIssuedKey":"2004","publisherPlace":"Abingdon ; London ; London ; London"}]}],"title":[{"title_sort":"Reflection length at infinity in hyperbolic reflection groups","title":"Reflection length at infinity in hyperbolic reflection groups"}],"person":[{"role":"aut","display":"Lotz, Marco","roleDisplay":"VerfasserIn","given":"Marco","family":"Lotz"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.11.2024"],"recId":"1909865885","language":["eng"]} | ||
| SRT | |a LOTZMARCOREFLECTION2620 | ||