Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks: a feasibility study

We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martins, Juliana Cristina (VerfasserIn) , Maier, Joscha (VerfasserIn) , Gianoli, Chiara (VerfasserIn) , Neppl, Sebastian (VerfasserIn) , Dedes, George (VerfasserIn) , Alhazmi, Abdulaziz (VerfasserIn) , Veloza, Stella (VerfasserIn) , Reiner, Michael (VerfasserIn) , Belka, Claus (VerfasserIn) , Kachelrieß, Marc (VerfasserIn) , Parodi, Katia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 October 2023
In: Physica medica
Year: 2023, Jahrgang: 114, Pages: 1-9
ISSN:1724-191X
DOI:10.1016/j.ejmp.2023.103148
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ejmp.2023.103148
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1120179723001758
Volltext
Verfasserangaben:Juliana Cristina Martins, Joscha Maier, Chiara Gianoli, Sebastian Neppl, George Dedes, Abdulaziz Alhazmi, Stella Veloza, Michael Reiner, Claus Belka, Marc Kachelrieß, Katia Parodi

MARC

LEADER 00000caa a2200000 c 4500
001 190991522X
003 DE-627
005 20250716213245.0
007 cr uuu---uuuuu
008 241129s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejmp.2023.103148  |2 doi 
035 |a (DE-627)190991522X 
035 |a (DE-599)KXP190991522X 
035 |a (OCoLC)1528014409 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Martins, Juliana Cristina  |d 1990-  |e VerfasserIn  |0 (DE-588)1317361423  |0 (DE-627)1879357224  |4 aut 
245 1 0 |a Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks  |b a feasibility study  |c Juliana Cristina Martins, Joscha Maier, Chiara Gianoli, Sebastian Neppl, George Dedes, Abdulaziz Alhazmi, Stella Veloza, Michael Reiner, Claus Belka, Marc Kachelrieß, Katia Parodi 
264 1 |c 4 October 2023 
300 |b Illustrationen, Diagramme 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.11.2024 
520 |a We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry. 
650 4 |a Deep Neural Networks 
650 4 |a EPID 
650 4 |a In vivo dosimetry 
650 4 |a Monte Carlo 
650 4 |a Radiotherapy 
700 1 |a Maier, Joscha  |d 1988-  |e VerfasserIn  |0 (DE-588)1185600868  |0 (DE-627)1664987231  |4 aut 
700 1 |a Gianoli, Chiara  |e VerfasserIn  |0 (DE-588)107505589X  |0 (DE-627)832902144  |0 (DE-576)443225206  |4 aut 
700 1 |a Neppl, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Dedes, George  |e VerfasserIn  |0 (DE-588)1246989255  |0 (DE-627)1780403437  |4 aut 
700 1 |a Alhazmi, Abdulaziz  |d 1984-  |e VerfasserIn  |0 (DE-588)117671709X  |0 (DE-627)1047745003  |0 (DE-576)516769936  |4 aut 
700 1 |a Veloza, Stella  |e VerfasserIn  |0 (DE-588)1208304348  |0 (DE-627)1694539962  |4 aut 
700 1 |a Reiner, Michael  |e VerfasserIn  |0 (DE-588)1131665732  |0 (DE-627)886309832  |0 (DE-576)488370825  |4 aut 
700 1 |a Belka, Claus  |e VerfasserIn  |0 (DE-588)143654829  |0 (DE-627)65383604X  |0 (DE-576)176701877  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
700 1 |a Parodi, Katia  |d 1975-  |e VerfasserIn  |0 (DE-588)129736996  |0 (DE-627)707308917  |0 (DE-576)188641688  |4 aut 
773 0 8 |i Enthalten in  |t Physica medica  |d Amsterdam : Elsevier, 1996  |g 114(2023) vom: Okt., Artikel-ID 103148, Seite 1-9  |h Online-Ressource  |w (DE-627)364471417  |w (DE-600)2110535-2  |w (DE-576)272350176  |x 1724-191X  |7 nnas  |a Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks a feasibility study 
773 1 8 |g volume:114  |g year:2023  |g month:10  |g elocationid:103148  |g pages:1-9  |g extent:9  |a Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks a feasibility study 
856 4 0 |u https://doi.org/10.1016/j.ejmp.2023.103148  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1120179723001758  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241129 
993 |a Article 
994 |a 2023 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 50000  |e 50000PK120866544  |k 0/50000/  |p 10 
998 |g 1185600868  |a Maier, Joscha  |m 1185600868:Maier, Joscha  |p 2  |y j 
999 |a KXP-PPN190991522X  |e 4627932162 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"190991522X","note":["Gesehen am 29.11.2024"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks","title":"Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks","subtitle":"a feasibility study"}],"language":["eng"],"person":[{"family":"Martins","given":"Juliana Cristina","roleDisplay":"VerfasserIn","role":"aut","display":"Martins, Juliana Cristina"},{"family":"Maier","display":"Maier, Joscha","roleDisplay":"VerfasserIn","role":"aut","given":"Joscha"},{"family":"Gianoli","display":"Gianoli, Chiara","roleDisplay":"VerfasserIn","role":"aut","given":"Chiara"},{"display":"Neppl, Sebastian","given":"Sebastian","roleDisplay":"VerfasserIn","role":"aut","family":"Neppl"},{"roleDisplay":"VerfasserIn","role":"aut","given":"George","display":"Dedes, George","family":"Dedes"},{"display":"Alhazmi, Abdulaziz","given":"Abdulaziz","role":"aut","roleDisplay":"VerfasserIn","family":"Alhazmi"},{"family":"Veloza","display":"Veloza, Stella","role":"aut","roleDisplay":"VerfasserIn","given":"Stella"},{"family":"Reiner","display":"Reiner, Michael","roleDisplay":"VerfasserIn","role":"aut","given":"Michael"},{"family":"Belka","roleDisplay":"VerfasserIn","role":"aut","given":"Claus","display":"Belka, Claus"},{"family":"Kachelrieß","given":"Marc","role":"aut","roleDisplay":"VerfasserIn","display":"Kachelrieß, Marc"},{"family":"Parodi","role":"aut","roleDisplay":"VerfasserIn","given":"Katia","display":"Parodi, Katia"}],"relHost":[{"id":{"zdb":["2110535-2"],"eki":["364471417"],"issn":["1724-191X"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["Nachgewiesen 12.1996 -"],"note":["Fortsetzung der Druck-Ausgabe","Gesehen am 12.11.2021"],"part":{"text":"114(2023) vom: Okt., Artikel-ID 103148, Seite 1-9","year":"2023","extent":"9","pages":"1-9","volume":"114"},"recId":"364471417","disp":"Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks a feasibility studyPhysica medica","language":["eng"],"origin":[{"dateIssuedDisp":"1996-","publisher":"Elsevier ; Istituti Editoriali e Poligrafici Internazionali","publisherPlace":"Amsterdam ; Pisa","dateIssuedKey":"1996"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Physica medica","title":"Physica medica","subtitle":"European journal of medical physics ; an international journal devoted to the applications of physics to medicine and biology"}]}],"id":{"eki":["190991522X"],"doi":["10.1016/j.ejmp.2023.103148"]},"name":{"displayForm":["Juliana Cristina Martins, Joscha Maier, Chiara Gianoli, Sebastian Neppl, George Dedes, Abdulaziz Alhazmi, Stella Veloza, Michael Reiner, Claus Belka, Marc Kachelrieß, Katia Parodi"]},"origin":[{"dateIssuedDisp":"4 October 2023","dateIssuedKey":"2023"}],"physDesc":[{"noteIll":"Illustrationen, Diagramme","extent":"9 S."}]} 
SRT |a MARTINSJULTOWARDSREA4202