Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma

Background: The aim of this study was to establish a deep learning prediction model for neoadjuvant FLOT chemotherapy response. The neural network utilized clinical data and visual information from whole-slide images (WSIs) of therapy-naïve gastroesophageal cancer biopsies. Methods: This study incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jung, Jin-On (VerfasserIn) , Pisula, Juan I. (VerfasserIn) , Beyerlein, Xenia (VerfasserIn) , Lukomski, Leandra (VerfasserIn) , Knipper, Karl (VerfasserIn) , Abu Hejleh, Aram P. (VerfasserIn) , Fuchs, Hans F. (VerfasserIn) , Tolkach, Yuri (VerfasserIn) , Chon, Seung-Hun (VerfasserIn) , Nienhüser, Henrik (VerfasserIn) , Büchler, Markus W. (VerfasserIn) , Bruns, Christiane J. (VerfasserIn) , Quaas, Alexander (VerfasserIn) , Bozek, Katarzyna (VerfasserIn) , Popp, Felix (VerfasserIn) , Schmidt, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 July 2024
In: Cancers
Year: 2024, Jahrgang: 16, Heft: 13, Pages: 1-12
ISSN:2072-6694
DOI:10.3390/cancers16132445
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/cancers16132445
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2072-6694/16/13/2445
Volltext
Verfasserangaben:Jin-On Jung, Juan I. Pisula, Xenia Beyerlein, Leandra Lukomski, Karl Knipper, Aram P. Abu Hejleh, Hans F. Fuchs, Yuri Tolkach, Seung-Hun Chon, Henrik Nienhüser, Markus W. Büchler, Christiane J. Bruns, Alexander Quaas, Katarzyna Bozek, Felix Popp and Thomas Schmidt

MARC

LEADER 00000caa a2200000 c 4500
001 1911204432
003 DE-627
005 20250716214654.0
007 cr uuu---uuuuu
008 241209s2024 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers16132445  |2 doi 
035 |a (DE-627)1911204432 
035 |a (DE-599)KXP1911204432 
035 |a (OCoLC)1528014644 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Jung, Jin-On  |d 1990-  |e VerfasserIn  |0 (DE-588)1190665913  |0 (DE-627)166922256X  |4 aut 
245 1 0 |a Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma  |c Jin-On Jung, Juan I. Pisula, Xenia Beyerlein, Leandra Lukomski, Karl Knipper, Aram P. Abu Hejleh, Hans F. Fuchs, Yuri Tolkach, Seung-Hun Chon, Henrik Nienhüser, Markus W. Büchler, Christiane J. Bruns, Alexander Quaas, Katarzyna Bozek, Felix Popp and Thomas Schmidt 
264 1 |c 3 July 2024 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.12.2024 
520 |a Background: The aim of this study was to establish a deep learning prediction model for neoadjuvant FLOT chemotherapy response. The neural network utilized clinical data and visual information from whole-slide images (WSIs) of therapy-naïve gastroesophageal cancer biopsies. Methods: This study included 78 patients from the University Hospital of Cologne and 59 patients from the University Hospital of Heidelberg used as external validation. Results: After surgical resection, 33 patients from Cologne (42.3%) were ypN0 and 45 patients (57.7%) were ypN+, while 23 patients from Heidelberg (39.0%) were ypN0 and 36 patients (61.0%) were ypN+ (p = 0.695). The neural network had an accuracy of 92.1% to predict lymph node metastasis and the area under the curve (AUC) was 0.726. A total of 43 patients from Cologne (55.1%) had less than 50% residual vital tumor (RVT) compared to 34 patients from Heidelberg (57.6%, p = 0.955). The model was able to predict tumor regression with an error of ±14.1% and an AUC of 0.648. Conclusions: This study demonstrates that visual features extracted by deep learning from therapy-naïve biopsies of gastroesophageal adenocarcinomas correlate with positive lymph nodes and tumor regression. The results will be confirmed in prospective studies to achieve early allocation of patients to the most promising treatment. 
650 4 |a artificial intelligence 
650 4 |a chemotherapy response 
650 4 |a deep learning 
650 4 |a FLOT therapy 
650 4 |a gastroesophageal cancer 
650 4 |a neural network 
650 4 |a prediction algorithm 
700 1 |a Pisula, Juan I.  |e VerfasserIn  |4 aut 
700 1 |a Beyerlein, Xenia  |e VerfasserIn  |4 aut 
700 1 |a Lukomski, Leandra  |e VerfasserIn  |4 aut 
700 1 |a Knipper, Karl  |e VerfasserIn  |4 aut 
700 1 |a Abu Hejleh, Aram P.  |d 1997-  |e VerfasserIn  |0 (DE-588)136904285X  |0 (DE-627)1928549802  |4 aut 
700 1 |a Fuchs, Hans F.  |e VerfasserIn  |4 aut 
700 1 |a Tolkach, Yuri  |e VerfasserIn  |4 aut 
700 1 |a Chon, Seung-Hun  |e VerfasserIn  |4 aut 
700 1 |a Nienhüser, Henrik  |d 1986-  |e VerfasserIn  |0 (DE-588)104690342X  |0 (DE-627)777295865  |0 (DE-576)398176477  |4 aut 
700 1 |a Büchler, Markus W.  |d 1955-  |e VerfasserIn  |0 (DE-588)120893339  |0 (DE-627)080952526  |0 (DE-576)292434146  |4 aut 
700 1 |a Bruns, Christiane J.  |e VerfasserIn  |4 aut 
700 1 |a Quaas, Alexander  |e VerfasserIn  |4 aut 
700 1 |a Bozek, Katarzyna  |e VerfasserIn  |4 aut 
700 1 |a Popp, Felix  |e VerfasserIn  |4 aut 
700 1 |a Schmidt, Thomas  |d 1980-  |e VerfasserIn  |0 (DE-588)132383152  |0 (DE-627)521950023  |0 (DE-576)260799149  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 16(2024), 13, Artikel-ID 2445, Seite 1-12  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma 
773 1 8 |g volume:16  |g year:2024  |g number:13  |g elocationid:2445  |g pages:1-12  |g extent:12  |a Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma 
856 4 0 |u https://doi.org/10.3390/cancers16132445  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/16/13/2445  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241209 
993 |a Article 
994 |a 2024 
998 |g 132383152  |a Schmidt, Thomas  |m 132383152:Schmidt, Thomas  |d 50000  |e 50000PS132383152  |k 0/50000/  |p 16  |y j 
998 |g 120893339  |a Büchler, Markus W.  |m 120893339:Büchler, Markus W.  |d 910000  |d 910200  |e 910000PB120893339  |e 910200PB120893339  |k 0/910000/  |k 1/910000/910200/  |p 11 
998 |g 104690342X  |a Nienhüser, Henrik  |m 104690342X:Nienhüser, Henrik  |d 910000  |d 910200  |e 910000PN104690342X  |e 910200PN104690342X  |k 0/910000/  |k 1/910000/910200/  |p 10 
998 |g 136904285X  |a Abu Hejleh, Aram P.  |m 136904285X:Abu Hejleh, Aram P.  |d 60000  |e 60000PA136904285X  |k 0/60000/  |p 6 
999 |a KXP-PPN1911204432  |e 4633348191 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1911204432"],"doi":["10.3390/cancers16132445"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"3 July 2024"}],"person":[{"role":"aut","given":"Jin-On","display":"Jung, Jin-On","family":"Jung"},{"role":"aut","given":"Juan I.","display":"Pisula, Juan I.","family":"Pisula"},{"role":"aut","family":"Beyerlein","display":"Beyerlein, Xenia","given":"Xenia"},{"given":"Leandra","display":"Lukomski, Leandra","family":"Lukomski","role":"aut"},{"family":"Knipper","display":"Knipper, Karl","given":"Karl","role":"aut"},{"role":"aut","family":"Abu Hejleh","display":"Abu Hejleh, Aram P.","given":"Aram P."},{"family":"Fuchs","display":"Fuchs, Hans F.","given":"Hans F.","role":"aut"},{"given":"Yuri","display":"Tolkach, Yuri","family":"Tolkach","role":"aut"},{"given":"Seung-Hun","family":"Chon","display":"Chon, Seung-Hun","role":"aut"},{"given":"Henrik","display":"Nienhüser, Henrik","family":"Nienhüser","role":"aut"},{"role":"aut","family":"Büchler","display":"Büchler, Markus W.","given":"Markus W."},{"role":"aut","display":"Bruns, Christiane J.","family":"Bruns","given":"Christiane J."},{"given":"Alexander","family":"Quaas","display":"Quaas, Alexander","role":"aut"},{"given":"Katarzyna","display":"Bozek, Katarzyna","family":"Bozek","role":"aut"},{"given":"Felix","family":"Popp","display":"Popp, Felix","role":"aut"},{"given":"Thomas","family":"Schmidt","display":"Schmidt, Thomas","role":"aut"}],"physDesc":[{"noteIll":"Illustrationen","extent":"12 S."}],"title":[{"title_sort":"Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma","title":"Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinoma"}],"relHost":[{"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"note":["Gesehen am 27.05.2020"],"pubHistory":["1.2009 -"],"recId":"614095670","disp":"Deep learning histology for prediction of lymph node metastases and tumor regression after neoadjuvant FLOT therapy of gastroesophageal adenocarcinomaCancers","title":[{"title":"Cancers","title_sort":"Cancers"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"16","pages":"1-12","text":"16(2024), 13, Artikel-ID 2445, Seite 1-12","year":"2024","extent":"12","issue":"13"},"origin":[{"publisher":"MDPI","dateIssuedKey":"2009","dateIssuedDisp":"2009-","publisherPlace":"Basel"}],"id":{"issn":["2072-6694"],"zdb":["2527080-1"],"eki":["614095670"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"]}],"name":{"displayForm":["Jin-On Jung, Juan I. Pisula, Xenia Beyerlein, Leandra Lukomski, Karl Knipper, Aram P. Abu Hejleh, Hans F. Fuchs, Yuri Tolkach, Seung-Hun Chon, Henrik Nienhüser, Markus W. Büchler, Christiane J. Bruns, Alexander Quaas, Katarzyna Bozek, Felix Popp and Thomas Schmidt"]},"recId":"1911204432","note":["Gesehen am 09.12.2024"]} 
SRT |a JUNGJINONPDEEPLEARNI3202