Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials

In this paper we present the homogenization for nonlinear viscoelastic second-grade non-simple perforated materials at large strain in the quasistatic setting. The reference domain is periodically perforated and is depending on the scaling parameter which describes the ratio between the size of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gahn, Markus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 July 2024
In: Calculus of variations and partial differential equations
Year: 2024, Jahrgang: 63, Heft: 7, Pages: 1-52
ISSN:1432-0835
DOI:10.1007/s00526-024-02793-7
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00526-024-02793-7
Volltext
Verfasserangaben:Markus Gahn

MARC

LEADER 00000caa a2200000 c 4500
001 1911797360
003 DE-627
005 20250716215042.0
007 cr uuu---uuuuu
008 241210s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00526-024-02793-7  |2 doi 
035 |a (DE-627)1911797360 
035 |a (DE-599)KXP1911797360 
035 |a (OCoLC)1528015000 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Gahn, Markus  |e VerfasserIn  |0 (DE-588)112652302X  |0 (DE-627)880999675  |0 (DE-576)484545841  |4 aut 
245 1 0 |a Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials  |c Markus Gahn 
264 1 |c 16 July 2024 
300 |a 52 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.12.2024 
520 |a In this paper we present the homogenization for nonlinear viscoelastic second-grade non-simple perforated materials at large strain in the quasistatic setting. The reference domain is periodically perforated and is depending on the scaling parameter which describes the ratio between the size of the whole domain and the small periodic perforations. The mechanical energy depends on the gradient and also the second gradient of the deformation, and also respects positivity of the determinant of the deformation gradient. For the viscous stress we assume dynamic frame indifference and it is therefore depending on the rate of the Cauchy-stress tensor. For the derivation of the homogenized model for ε → 0 we use the method of two-scale convergence. For this uniform a priori estimates with respect to are necessary. The most crucial part is to estimate the rate of the deformation gradient. Due to the time-dependent frame indifference of the viscous term, we only get coercivity with respect to the rate of the Cauchy-stress tensor. To overcome this problem we derive a Korn inequality for non-constant coefficients on the perforated domain. The crucial point is to verify that the constant in this inequality, which is usually depending on the domain, can be chosen independently of the parameter ε. Further, we construct an extension operator for second order Sobolev spaces on perforated domains with operator norm independent of ε. 
773 0 8 |i Enthalten in  |t Calculus of variations and partial differential equations  |d Berlin : Springer, 1993  |g 63(2024), 7, Artikel-ID 182, Seite 1-52  |h Online-Ressource  |w (DE-627)265508274  |w (DE-600)1464202-5  |w (DE-576)074889710  |x 1432-0835  |7 nnas  |a Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials 
773 1 8 |g volume:63  |g year:2024  |g number:7  |g elocationid:182  |g pages:1-52  |g extent:52  |a Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials 
856 4 0 |u https://doi.org/10.1007/s00526-024-02793-7  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241210 
993 |a Article 
994 |a 2024 
998 |g 112652302X  |a Gahn, Markus  |m 112652302X:Gahn, Markus  |d 110000  |d 110400  |e 110000PG112652302X  |e 110400PG112652302X  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1911797360  |e 463437630X 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials","title":"Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materials"}],"person":[{"family":"Gahn","given":"Markus","display":"Gahn, Markus","role":"aut"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"16 July 2024","dateIssuedKey":"2024"}],"note":["Gesehen am 10.12.2024"],"id":{"doi":["10.1007/s00526-024-02793-7"],"eki":["1911797360"]},"recId":"1911797360","relHost":[{"pubHistory":["1.1993 -"],"title":[{"title":"Calculus of variations and partial differential equations","title_sort":"Calculus of variations and partial differential equations"}],"origin":[{"dateIssuedKey":"1993","dateIssuedDisp":"1993-","publisherPlace":"Berlin ; Heidelberg","publisher":"Springer"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.11.05"],"id":{"issn":["1432-0835"],"zdb":["1464202-5"],"eki":["265508274"]},"recId":"265508274","titleAlt":[{"title":"Calculus of variations"}],"part":{"volume":"63","pages":"1-52","extent":"52","year":"2024","issue":"7","text":"63(2024), 7, Artikel-ID 182, Seite 1-52"},"disp":"Extension operators and Korn inequality for variable coefficients in perforated domains with applications to homogenization of viscoelastic non-simple materialsCalculus of variations and partial differential equations","physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"name":{"displayForm":["Markus Gahn"]},"physDesc":[{"extent":"52 S."}],"language":["eng"]} 
SRT |a GAHNMARKUSEXTENSIONO1620