On equivariant derived categories

We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant cat...

Full description

Saved in:
Bibliographic Details
Main Authors: Beckmann, Thorsten (Author) , Oberdieck, Georg (Author)
Format: Article (Journal)
Language:English
Published: 11 May 2023
In: European journal of mathematics
Year: 2023, Volume: 9, Issue: 2, Pages: 1-39
ISSN:2199-6768
DOI:10.1007/s40879-023-00635-y
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s40879-023-00635-y
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40879-023-00635-y
Get full text
Author Notes:Thorsten Beckmann, Georg Oberdieck

MARC

LEADER 00000caa a2200000 c 4500
001 1911966103
003 DE-627
005 20250716215103.0
007 cr uuu---uuuuu
008 241211s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s40879-023-00635-y  |2 doi 
035 |a (DE-627)1911966103 
035 |a (DE-599)KXP1911966103 
035 |a (OCoLC)1528014945 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Beckmann, Thorsten  |e VerfasserIn  |0 (DE-588)1171942222  |0 (DE-627)1040802761  |0 (DE-576)513921451  |4 aut 
245 1 0 |a On equivariant derived categories  |c Thorsten Beckmann, Georg Oberdieck 
264 1 |c 11 May 2023 
300 |a 39 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.12.2024 
520 |a We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant category to be Calabi-Yau. We describe an obstruction for a subgroup of the group of auto-equivalences to act on the derived category. As application we show that the equivariant category of any Calabi-Yau action on the derived category of an elliptic curve is equivalent to the derived category of an elliptic curve. 
650 4 |a 13D03 
650 4 |a 14F05 
650 4 |a 18E30 
650 4 |a Derived categories 
650 4 |a Equivariant categories 
650 4 |a Stability conditions 
700 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
773 0 8 |i Enthalten in  |t European journal of mathematics  |d Berlin [u.a.] : Springer, 2015  |g 9(2023), 2, Artikel-ID 36, Seite 1-39  |h Online-Ressource  |w (DE-627)815914067  |w (DE-600)2806605-4  |w (DE-576)425063828  |x 2199-6768  |7 nnas  |a On equivariant derived categories 
773 1 8 |g volume:9  |g year:2023  |g number:2  |g elocationid:36  |g pages:1-39  |g extent:39  |a On equivariant derived categories 
856 4 0 |u https://doi.org/10.1007/s40879-023-00635-y  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s40879-023-00635-y  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241211 
993 |a Article 
994 |a 2023 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 2  |y j 
999 |a KXP-PPN1911966103  |e 4634542560 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"id":{"issn":["2199-6768"],"eki":["815914067"],"zdb":["2806605-4"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2015 -"],"note":["Gesehen am 04.02.2015"],"recId":"815914067","part":{"issue":"2","volume":"9","extent":"39","year":"2023","pages":"1-39","text":"9(2023), 2, Artikel-ID 36, Seite 1-39"},"disp":"On equivariant derived categoriesEuropean journal of mathematics","language":["eng"],"origin":[{"publisherPlace":"Berlin [u.a.]","dateIssuedKey":"2015","publisher":"Springer","dateIssuedDisp":"2015-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"European journal of mathematics","title_sort":"European journal of mathematics"}]}],"id":{"eki":["1911966103"],"doi":["10.1007/s40879-023-00635-y"]},"name":{"displayForm":["Thorsten Beckmann, Georg Oberdieck"]},"physDesc":[{"extent":"39 S."}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"11 May 2023"}],"language":["eng"],"person":[{"family":"Beckmann","given":"Thorsten","roleDisplay":"VerfasserIn","role":"aut","display":"Beckmann, Thorsten"},{"family":"Oberdieck","given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg"}],"title":[{"title":"On equivariant derived categories","title_sort":"On equivariant derived categories"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1911966103","note":["Gesehen am 11.12.2024"]} 
SRT |a BECKMANNTHONEQUIVARI1120