On equivariant derived categories
We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant cat...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
11 May 2023
|
| In: |
European journal of mathematics
Year: 2023, Volume: 9, Issue: 2, Pages: 1-39 |
| ISSN: | 2199-6768 |
| DOI: | 10.1007/s40879-023-00635-y |
| Online Access: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s40879-023-00635-y Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40879-023-00635-y |
| Author Notes: | Thorsten Beckmann, Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1911966103 | ||
| 003 | DE-627 | ||
| 005 | 20250716215103.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241211s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s40879-023-00635-y |2 doi | |
| 035 | |a (DE-627)1911966103 | ||
| 035 | |a (DE-599)KXP1911966103 | ||
| 035 | |a (OCoLC)1528014945 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Beckmann, Thorsten |e VerfasserIn |0 (DE-588)1171942222 |0 (DE-627)1040802761 |0 (DE-576)513921451 |4 aut | |
| 245 | 1 | 0 | |a On equivariant derived categories |c Thorsten Beckmann, Georg Oberdieck |
| 264 | 1 | |c 11 May 2023 | |
| 300 | |a 39 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.12.2024 | ||
| 520 | |a We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant category to be Calabi-Yau. We describe an obstruction for a subgroup of the group of auto-equivalences to act on the derived category. As application we show that the equivariant category of any Calabi-Yau action on the derived category of an elliptic curve is equivalent to the derived category of an elliptic curve. | ||
| 650 | 4 | |a 13D03 | |
| 650 | 4 | |a 14F05 | |
| 650 | 4 | |a 18E30 | |
| 650 | 4 | |a Derived categories | |
| 650 | 4 | |a Equivariant categories | |
| 650 | 4 | |a Stability conditions | |
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t European journal of mathematics |d Berlin [u.a.] : Springer, 2015 |g 9(2023), 2, Artikel-ID 36, Seite 1-39 |h Online-Ressource |w (DE-627)815914067 |w (DE-600)2806605-4 |w (DE-576)425063828 |x 2199-6768 |7 nnas |a On equivariant derived categories |
| 773 | 1 | 8 | |g volume:9 |g year:2023 |g number:2 |g elocationid:36 |g pages:1-39 |g extent:39 |a On equivariant derived categories |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s40879-023-00635-y |x Resolving-System |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s40879-023-00635-y |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241211 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 |y j | ||
| 999 | |a KXP-PPN1911966103 |e 4634542560 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"id":{"issn":["2199-6768"],"eki":["815914067"],"zdb":["2806605-4"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2015 -"],"note":["Gesehen am 04.02.2015"],"recId":"815914067","part":{"issue":"2","volume":"9","extent":"39","year":"2023","pages":"1-39","text":"9(2023), 2, Artikel-ID 36, Seite 1-39"},"disp":"On equivariant derived categoriesEuropean journal of mathematics","language":["eng"],"origin":[{"publisherPlace":"Berlin [u.a.]","dateIssuedKey":"2015","publisher":"Springer","dateIssuedDisp":"2015-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"European journal of mathematics","title_sort":"European journal of mathematics"}]}],"id":{"eki":["1911966103"],"doi":["10.1007/s40879-023-00635-y"]},"name":{"displayForm":["Thorsten Beckmann, Georg Oberdieck"]},"physDesc":[{"extent":"39 S."}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"11 May 2023"}],"language":["eng"],"person":[{"family":"Beckmann","given":"Thorsten","roleDisplay":"VerfasserIn","role":"aut","display":"Beckmann, Thorsten"},{"family":"Oberdieck","given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg"}],"title":[{"title":"On equivariant derived categories","title_sort":"On equivariant derived categories"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1911966103","note":["Gesehen am 11.12.2024"]} | ||
| SRT | |a BECKMANNTHONEQUIVARI1120 | ||