On equivariant derived categories

We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beckmann, Thorsten (VerfasserIn) , Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 May 2023
In: European journal of mathematics
Year: 2023, Jahrgang: 9, Heft: 2, Pages: 1-39
ISSN:2199-6768
DOI:10.1007/s40879-023-00635-y
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s40879-023-00635-y
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40879-023-00635-y
Volltext
Verfasserangaben:Thorsten Beckmann, Georg Oberdieck
Beschreibung
Zusammenfassung:We study the equivariant category associated to a finite group action on the derived category of coherent sheaves of a smooth projective variety. In particular, we discuss decompositions of the equivariant category, prove the existence of a Serre functor, and give a criterion for the equivariant category to be Calabi-Yau. We describe an obstruction for a subgroup of the group of auto-equivalences to act on the derived category. As application we show that the equivariant category of any Calabi-Yau action on the derived category of an elliptic curve is equivalent to the derived category of an elliptic curve.
Beschreibung:Gesehen am 11.12.2024
Beschreibung:Online Resource
ISSN:2199-6768
DOI:10.1007/s40879-023-00635-y