Hilbert schemes of K3 surfaces, generalized Kummer, and cobordism classes of hyper-Kähler manifolds
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
25 October 2022
|
| In: |
Pure and applied mathematics quarterly
Year: 2022, Jahrgang: 18, Heft: 4, Pages: 1723-1748 |
| ISSN: | 1558-8602 |
| DOI: | 10.4310/PAMQ.2022.v18.n4.a13 |
| Online-Zugang: | Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.4310/PAMQ.2022.v18.n4.a13 Verlag, lizenzpflichtig, Volltext: https://link.intlpress.com/JDetail/1806163600932810754 |
| Verfasserangaben: | Georg Oberdieck, Jieao Song & Claire Voisin |
| Beschreibung: | Gesehen am 12.12.2024 We prove that the complex cobordism class of any hyper-Kähler manifold of dimension is a unique combination with rational coefficients of classes of products of punctual Hilbert schemes of K3 surfaces. We also prove a similar result using the generalized Kummer varieties instead of punctual Hilbert schemes. As a key step, we establish a closed formula for the top Chern character of their tangent bundles Special issue celebrating the work of Herb Clemens |
|---|---|
| Beschreibung: | Online Resource |
| ISSN: | 1558-8602 |
| DOI: | 10.4310/PAMQ.2022.v18.n4.a13 |