Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions
Abstract: We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2022
|
| In: |
Journal of algebraic geometry
Year: 2022, Volume: 31, Issue: 1, Pages: 13-73 |
| ISSN: | 1534-7486 |
| DOI: | 10.1090/jag/788 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/jag/788 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/jag/2022-31-01/S1056-3911-2021-00788-9/ |
| Author Notes: | Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1912178311 | ||
| 003 | DE-627 | ||
| 005 | 20250716215532.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 241212s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1090/jag/788 |2 doi | |
| 035 | |a (DE-627)1912178311 | ||
| 035 | |a (DE-599)KXP1912178311 | ||
| 035 | |a (OCoLC)1528015329 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions |c Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda |
| 264 | 1 | |c 2022 | |
| 300 | |a 61 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 14. September 2021 | ||
| 500 | |a Gesehen am 12.12.2024 | ||
| 520 | |a Abstract: We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical criterion for the absence of walls in terms of a discriminant function. For principally polarized abelian threefolds of Picard rank one, the wall-crossing contributions are discussed in detail. The discussion yields evidence for a conjectural formula for curve counting invariants by Bryan, Pandharipande, Yin, and the first author. For the proof we strengthen several known results on Bridgeland stability conditions of abelian threefolds. We show that certain previously constructed stability conditions satisfy the full support property. In particular, the stability manifold is non-empty. We also prove the existence of a Gieseker chamber and determine all wall-crossing contributions. A definition of reduced generalized Donaldson–Thomas invariants for arbitrary Calabi–Yau threefolds with abelian actions is given. | ||
| 700 | 1 | |a Piyaratne, Dulip |e VerfasserIn |0 (DE-588)135088426X |0 (DE-627)1912178745 |4 aut | |
| 700 | 1 | |a Toda, Yukinobu |e VerfasserIn |0 (DE-588)1337567361 |0 (DE-627)1897317921 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of algebraic geometry |d Providence, RI : Univ. Press, 2002 |g 31(2022), 1, Seite 13-73 |h Online-Ressource |w (DE-627)338479430 |w (DE-600)2064214-3 |w (DE-576)096806974 |x 1534-7486 |7 nnas |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions |
| 773 | 1 | 8 | |g volume:31 |g year:2022 |g number:1 |g pages:13-73 |g extent:61 |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions |
| 856 | 4 | 0 | |u https://doi.org/10.1090/jag/788 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.ams.org/jag/2022-31-01/S1056-3911-2021-00788-9/ |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20241212 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j | ||
| 999 | |a KXP-PPN1912178311 |e 463505053X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions","title":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions"}],"name":{"displayForm":["Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda"]},"id":{"eki":["1912178311"],"doi":["10.1090/jag/788"]},"physDesc":[{"extent":"61 S."}],"origin":[{"dateIssuedDisp":"2022","dateIssuedKey":"2022"}],"relHost":[{"disp":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditionsJournal of algebraic geometry","language":["eng"],"origin":[{"dateIssuedKey":"2002","publisherPlace":"Providence, RI","dateIssuedDisp":"2002-","publisher":"Univ. Press"}],"name":{"displayForm":["American Mathematical Society"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of algebraic geometry","title_sort":"Journal of algebraic geometry"}],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Mathematical Society"}],"id":{"issn":["1534-7486"],"eki":["338479430"],"zdb":["2064214-3"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["Nachgewiesen 11.2002 -"],"part":{"issue":"1","volume":"31","pages":"13-73","extent":"61","year":"2022","text":"31(2022), 1, Seite 13-73"},"recId":"338479430","note":["Gesehen am 25.04.24"]}],"person":[{"family":"Oberdieck","given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg"},{"display":"Piyaratne, Dulip","given":"Dulip","roleDisplay":"VerfasserIn","role":"aut","family":"Piyaratne"},{"display":"Toda, Yukinobu","given":"Yukinobu","role":"aut","roleDisplay":"VerfasserIn","family":"Toda"}],"language":["eng"],"note":["Online veröffentlicht: 14. September 2021","Gesehen am 12.12.2024"],"recId":"1912178311","type":{"bibl":"article-journal","media":"Online-Ressource"}} | ||
| SRT | |a OBERDIECKGDONALDSONT2022 | ||