Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions

Abstract: We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical...

Full description

Saved in:
Bibliographic Details
Main Authors: Oberdieck, Georg (Author) , Piyaratne, Dulip (Author) , Toda, Yukinobu (Author)
Format: Article (Journal)
Language:English
Published: 2022
In: Journal of algebraic geometry
Year: 2022, Volume: 31, Issue: 1, Pages: 13-73
ISSN:1534-7486
DOI:10.1090/jag/788
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/jag/788
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/jag/2022-31-01/S1056-3911-2021-00788-9/
Get full text
Author Notes:Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda

MARC

LEADER 00000caa a2200000 c 4500
001 1912178311
003 DE-627
005 20250716215532.0
007 cr uuu---uuuuu
008 241212s2022 xx |||||o 00| ||eng c
024 7 |a 10.1090/jag/788  |2 doi 
035 |a (DE-627)1912178311 
035 |a (DE-599)KXP1912178311 
035 |a (OCoLC)1528015329 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions  |c Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda 
264 1 |c 2022 
300 |a 61 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 14. September 2021 
500 |a Gesehen am 12.12.2024 
520 |a Abstract: We study the reduced Donaldson–Thomas theory of abelian threefolds using Bridgeland stability conditions. The main result is the invariance of the reduced Donaldson–Thomas invariants under all derived autoequivalences, up to explicitly given wall-crossing terms. We also present a numerical criterion for the absence of walls in terms of a discriminant function. For principally polarized abelian threefolds of Picard rank one, the wall-crossing contributions are discussed in detail. The discussion yields evidence for a conjectural formula for curve counting invariants by Bryan, Pandharipande, Yin, and the first author. For the proof we strengthen several known results on Bridgeland stability conditions of abelian threefolds. We show that certain previously constructed stability conditions satisfy the full support property. In particular, the stability manifold is non-empty. We also prove the existence of a Gieseker chamber and determine all wall-crossing contributions. A definition of reduced generalized Donaldson–Thomas invariants for arbitrary Calabi–Yau threefolds with abelian actions is given. 
700 1 |a Piyaratne, Dulip  |e VerfasserIn  |0 (DE-588)135088426X  |0 (DE-627)1912178745  |4 aut 
700 1 |a Toda, Yukinobu  |e VerfasserIn  |0 (DE-588)1337567361  |0 (DE-627)1897317921  |4 aut 
773 0 8 |i Enthalten in  |t Journal of algebraic geometry  |d Providence, RI : Univ. Press, 2002  |g 31(2022), 1, Seite 13-73  |h Online-Ressource  |w (DE-627)338479430  |w (DE-600)2064214-3  |w (DE-576)096806974  |x 1534-7486  |7 nnas  |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions 
773 1 8 |g volume:31  |g year:2022  |g number:1  |g pages:13-73  |g extent:61  |a Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions 
856 4 0 |u https://doi.org/10.1090/jag/788  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.ams.org/jag/2022-31-01/S1056-3911-2021-00788-9/  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20241212 
993 |a Article 
994 |a 2022 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1912178311  |e 463505053X 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions","title":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditions"}],"name":{"displayForm":["Georg Oberdieck, Dulip Piyaratne, and Yukinobu Toda"]},"id":{"eki":["1912178311"],"doi":["10.1090/jag/788"]},"physDesc":[{"extent":"61 S."}],"origin":[{"dateIssuedDisp":"2022","dateIssuedKey":"2022"}],"relHost":[{"disp":"Donaldson-Thomas invariants of abelian threefolds and Bridgeland stability conditionsJournal of algebraic geometry","language":["eng"],"origin":[{"dateIssuedKey":"2002","publisherPlace":"Providence, RI","dateIssuedDisp":"2002-","publisher":"Univ. Press"}],"name":{"displayForm":["American Mathematical Society"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of algebraic geometry","title_sort":"Journal of algebraic geometry"}],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Mathematical Society"}],"id":{"issn":["1534-7486"],"eki":["338479430"],"zdb":["2064214-3"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["Nachgewiesen 11.2002 -"],"part":{"issue":"1","volume":"31","pages":"13-73","extent":"61","year":"2022","text":"31(2022), 1, Seite 13-73"},"recId":"338479430","note":["Gesehen am 25.04.24"]}],"person":[{"family":"Oberdieck","given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg"},{"display":"Piyaratne, Dulip","given":"Dulip","roleDisplay":"VerfasserIn","role":"aut","family":"Piyaratne"},{"display":"Toda, Yukinobu","given":"Yukinobu","role":"aut","roleDisplay":"VerfasserIn","family":"Toda"}],"language":["eng"],"note":["Online veröffentlicht: 14. September 2021","Gesehen am 12.12.2024"],"recId":"1912178311","type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a OBERDIECKGDONALDSONT2022