Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms

Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schrader, Adrian (VerfasserIn) , Netzer, Nils (VerfasserIn) , Hielscher, Thomas (VerfasserIn) , Görtz, Magdalena (VerfasserIn) , Zhang, Kevin Sun (VerfasserIn) , Schütz, Viktoria (VerfasserIn) , Stenzinger, Albrecht (VerfasserIn) , Hohenfellner, Markus (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 02 July 2024
In: European radiology
Year: 2024, Jahrgang: 34, Heft: 12, Pages: 7909-7920
ISSN:1432-1084
DOI:10.1007/s00330-024-10818-0
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00330-024-10818-0
Volltext
Verfasserangaben:Adrian Schrader, Nils Netzer, Thomas Hielscher, Magdalena Görtz, Kevin Sun Zhang, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp

MARC

LEADER 00000caa a2200000 c 4500
001 1912351862
003 DE-627
005 20250716215819.0
007 cr uuu---uuuuu
008 241216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00330-024-10818-0  |2 doi 
035 |a (DE-627)1912351862 
035 |a (DE-599)KXP1912351862 
035 |a (OCoLC)1528015222 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Schrader, Adrian  |e VerfasserIn  |0 (DE-588)1351241672  |0 (DE-627)191235537X  |4 aut 
245 1 0 |a Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI  |b comparison to PI-RADS and integration with clinical data in nomograms  |c Adrian Schrader, Nils Netzer, Thomas Hielscher, Magdalena Görtz, Kevin Sun Zhang, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp 
264 1 |c 02 July 2024 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.12.2024 
520 |a Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS. 
650 4 |a Deep learning 
650 4 |a Nomograms 
650 4 |a Prostatic neoplasms, Multiparametric magnetic resonance imaging 
650 4 |a Risk assessment 
700 1 |a Netzer, Nils  |e VerfasserIn  |0 (DE-588)1254537902  |0 (DE-627)1797012975  |4 aut 
700 1 |a Hielscher, Thomas  |e VerfasserIn  |0 (DE-588)1159594791  |0 (DE-627)1022977768  |0 (DE-576)50506068X  |4 aut 
700 1 |a Görtz, Magdalena  |d 1992-  |e VerfasserIn  |0 (DE-588)1166813657  |0 (DE-627)1030681392  |0 (DE-576)510916600  |4 aut 
700 1 |a Zhang, Kevin Sun  |e VerfasserIn  |0 (DE-588)1207581461  |0 (DE-627)1694082342  |4 aut 
700 1 |a Schütz, Viktoria  |e VerfasserIn  |0 (DE-588)1183860021  |0 (DE-627)1663385335  |4 aut 
700 1 |a Stenzinger, Albrecht  |e VerfasserIn  |0 (DE-588)139606106  |0 (DE-627)703395238  |0 (DE-576)312432755  |4 aut 
700 1 |a Hohenfellner, Markus  |d 1958-  |e VerfasserIn  |0 (DE-588)133862518  |0 (DE-627)557857988  |0 (DE-576)300155263  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t European radiology  |d Berlin : Springer, 1991  |g 34(2024), 12, Seite 7909-7920  |h Online-Ressource  |w (DE-627)268757526  |w (DE-600)1472718-3  |w (DE-576)103868070  |x 1432-1084  |7 nnas  |a Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI comparison to PI-RADS and integration with clinical data in nomograms 
773 1 8 |g volume:34  |g year:2024  |g number:12  |g pages:7909-7920  |g extent:12  |a Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI comparison to PI-RADS and integration with clinical data in nomograms 
856 4 0 |u https://doi.org/10.1007/s00330-024-10818-0  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20241216 
993 |a Article 
994 |a 2024 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 10  |y j 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 9 
998 |g 133862518  |a Hohenfellner, Markus  |m 133862518:Hohenfellner, Markus  |d 910000  |d 910200  |d 50000  |e 910000PH133862518  |e 910200PH133862518  |e 50000PH133862518  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 8 
998 |g 139606106  |a Stenzinger, Albrecht  |m 139606106:Stenzinger, Albrecht  |d 910000  |d 912000  |d 50000  |e 910000PS139606106  |e 912000PS139606106  |e 50000PS139606106  |k 0/910000/  |k 1/910000/912000/  |k 0/50000/  |p 7 
998 |g 1183860021  |a Schütz, Viktoria  |m 1183860021:Schütz, Viktoria  |d 910000  |d 910200  |e 910000PS1183860021  |e 910200PS1183860021  |k 0/910000/  |k 1/910000/910200/  |p 6 
998 |g 1207581461  |a Zhang, Kevin Sun  |m 1207581461:Zhang, Kevin Sun  |d 50000  |e 50000PZ1207581461  |k 0/50000/  |p 5 
998 |g 1166813657  |a Görtz, Magdalena  |m 1166813657:Görtz, Magdalena  |d 910000  |d 910200  |d 50000  |e 910000PG1166813657  |e 910200PG1166813657  |e 50000PG1166813657  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 4 
998 |g 1159594791  |a Hielscher, Thomas  |m 1159594791:Hielscher, Thomas  |d 50000  |e 50000PH1159594791  |k 0/50000/  |p 3 
998 |g 1254537902  |a Netzer, Nils  |m 1254537902:Netzer, Nils  |d 910000  |d 911400  |e 910000PN1254537902  |e 911400PN1254537902  |k 0/910000/  |k 1/910000/911400/  |p 2 
999 |a KXP-PPN1912351862  |e 4636572807 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"eki":["1912351862"],"doi":["10.1007/s00330-024-10818-0"]},"physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"relHost":[{"titleAlt":[{"title":"European radiology / Supplement"},{"title":"European radiology supplements"}],"language":["eng"],"recId":"268757526","disp":"Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI comparison to PI-RADS and integration with clinical data in nomogramsEuropean radiology","type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1991 -"],"title":[{"title":"European radiology","title_sort":"European radiology","subtitle":"official organ of the European Association of Radiology"}],"corporate":[{"role":"isb","display":"European Association of Radiology"}],"origin":[{"dateIssuedKey":"1991","publisherPlace":"Berlin ; Heidelberg","publisher":"Springer","dateIssuedDisp":"1991-"}],"note":["Gesehen am 06.02.2018","Ungezählte Beil.: Supplement"],"part":{"pages":"7909-7920","year":"2024","volume":"34","text":"34(2024), 12, Seite 7909-7920","issue":"12","extent":"12"},"id":{"eki":["268757526"],"issn":["1432-1084","1613-3757"],"zdb":["1472718-3"]},"physDesc":[{"extent":"Online-Ressource"}]}],"note":["Gesehen am 16.12.2024"],"recId":"1912351862","name":{"displayForm":["Adrian Schrader, Nils Netzer, Thomas Hielscher, Magdalena Görtz, Kevin Sun Zhang, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"02 July 2024"}],"person":[{"role":"aut","family":"Schrader","display":"Schrader, Adrian","given":"Adrian"},{"display":"Netzer, Nils","given":"Nils","family":"Netzer","role":"aut"},{"display":"Hielscher, Thomas","given":"Thomas","family":"Hielscher","role":"aut"},{"role":"aut","given":"Magdalena","display":"Görtz, Magdalena","family":"Görtz"},{"role":"aut","display":"Zhang, Kevin Sun","given":"Kevin Sun","family":"Zhang"},{"family":"Schütz","display":"Schütz, Viktoria","given":"Viktoria","role":"aut"},{"given":"Albrecht","display":"Stenzinger, Albrecht","family":"Stenzinger","role":"aut"},{"role":"aut","family":"Hohenfellner","display":"Hohenfellner, Markus","given":"Markus"},{"role":"aut","family":"Schlemmer","given":"Heinz-Peter","display":"Schlemmer, Heinz-Peter"},{"display":"Bonekamp, David","given":"David","family":"Bonekamp","role":"aut"}],"language":["eng"],"title":[{"title":"Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI","subtitle":"comparison to PI-RADS and integration with clinical data in nomograms","title_sort":"Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI"}]} 
SRT |a SCHRADERADPROSTATECA0220