A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface

We construct an action of the Neron-Severi part of the Looijenga-Lunts-Verbitsky Lie algebra on the Chow ring of the Hilbert scheme of points on a K3 surface. This yields a simplification of Maulik and Negut’s proof that the cycle class map is injective on the subring generated by divisor classes as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Commentarii mathematici Helvetici
Year: 2021, Jahrgang: 96, Heft: 1, Pages: 65-77
ISSN:1420-8946
DOI:10.4171/cmh/507
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/cmh/507
Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/cmh/articles/323502
Volltext
Verfasserangaben:Georg Oberdieck

MARC

LEADER 00000caa a2200000 c 4500
001 1914521250
003 DE-627
005 20250716222043.0
007 cr uuu---uuuuu
008 250114s2021 xx |||||o 00| ||eng c
024 7 |a 10.4171/cmh/507  |2 doi 
035 |a (DE-627)1914521250 
035 |a (DE-599)KXP1914521250 
035 |a (OCoLC)1528016090 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 2 |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface  |c Georg Oberdieck 
264 1 |c 2021 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.01.2025 
520 |a We construct an action of the Neron-Severi part of the Looijenga-Lunts-Verbitsky Lie algebra on the Chow ring of the Hilbert scheme of points on a K3 surface. This yields a simplification of Maulik and Negut’s proof that the cycle class map is injective on the subring generated by divisor classes as conjectured by Beauville. The key step in the construction is an explicit formula for Lefschetz duals in terms of Nakajima operators. Our results also lead to a formula for the monodromy action on Hilbert schemes in terms of Nakajima operators. 
773 0 8 |i Enthalten in  |t Commentarii mathematici Helvetici  |d Zürich : EMS Publ. House, 1929  |g 96(2021), 1, Seite 65-77  |h Online-Ressource  |w (DE-627)253721504  |w (DE-600)1458917-5  |w (DE-576)072372176  |x 1420-8946  |7 nnas  |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface 
773 1 8 |g volume:96  |g year:2021  |g number:1  |g pages:65-77  |g extent:13  |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface 
856 4 0 |u https://doi.org/10.4171/cmh/507  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ems.press/journals/cmh/articles/323502  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2021 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j  |y j 
999 |a KXP-PPN1914521250  |e 4651009697 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Oberdieck","roleDisplay":"VerfasserIn","role":"aut","given":"Georg","display":"Oberdieck, Georg"}],"language":["eng"],"id":{"doi":["10.4171/cmh/507"],"eki":["1914521250"]},"name":{"displayForm":["Georg Oberdieck"]},"physDesc":[{"extent":"13 S."}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"relHost":[{"id":{"doi":["10.4171/CMH"],"issn":["1420-8946"],"eki":["253721504"],"zdb":["1458917-5"]},"titleAlt":[{"title":"CMH"}],"pubHistory":["1.1929 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"253721504","part":{"text":"96(2021), 1, Seite 65-77","year":"2021","extent":"13","pages":"65-77","volume":"96","issue":"1"},"note":["Gesehen am 01.09.2021"],"origin":[{"dateIssuedKey":"1929","publisherPlace":"Zürich ; Basel","publisher":"EMS Publ. House ; Birkhäuser","dateIssuedDisp":"1929-"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["ger"],"disp":"A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surfaceCommentarii mathematici Helvetici","title":[{"subtitle":"CMH ; eine Zeitschrift der Schweizerischen Mathematischen Gesellschaft","title":"Commentarii mathematici Helvetici","title_sort":"Commentarii mathematici Helvetici"}]}],"title":[{"title":"A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface","title_sort":"Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 14.01.2025"],"recId":"1914521250"} 
SRT |a OBERDIECKGLIEALGEBRA2021