A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface
We construct an action of the Neron-Severi part of the Looijenga-Lunts-Verbitsky Lie algebra on the Chow ring of the Hilbert scheme of points on a K3 surface. This yields a simplification of Maulik and Negut’s proof that the cycle class map is injective on the subring generated by divisor classes as...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Commentarii mathematici Helvetici
Year: 2021, Jahrgang: 96, Heft: 1, Pages: 65-77 |
| ISSN: | 1420-8946 |
| DOI: | 10.4171/cmh/507 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.4171/cmh/507 Verlag, lizenzpflichtig, Volltext: https://ems.press/journals/cmh/articles/323502 |
| Verfasserangaben: | Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914521250 | ||
| 003 | DE-627 | ||
| 005 | 20250716222043.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.4171/cmh/507 |2 doi | |
| 035 | |a (DE-627)1914521250 | ||
| 035 | |a (DE-599)KXP1914521250 | ||
| 035 | |a (OCoLC)1528016090 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 2 | |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface |c Georg Oberdieck |
| 264 | 1 | |c 2021 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a We construct an action of the Neron-Severi part of the Looijenga-Lunts-Verbitsky Lie algebra on the Chow ring of the Hilbert scheme of points on a K3 surface. This yields a simplification of Maulik and Negut’s proof that the cycle class map is injective on the subring generated by divisor classes as conjectured by Beauville. The key step in the construction is an explicit formula for Lefschetz duals in terms of Nakajima operators. Our results also lead to a formula for the monodromy action on Hilbert schemes in terms of Nakajima operators. | ||
| 773 | 0 | 8 | |i Enthalten in |t Commentarii mathematici Helvetici |d Zürich : EMS Publ. House, 1929 |g 96(2021), 1, Seite 65-77 |h Online-Ressource |w (DE-627)253721504 |w (DE-600)1458917-5 |w (DE-576)072372176 |x 1420-8946 |7 nnas |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface |
| 773 | 1 | 8 | |g volume:96 |g year:2021 |g number:1 |g pages:65-77 |g extent:13 |a A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface |
| 856 | 4 | 0 | |u https://doi.org/10.4171/cmh/507 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://ems.press/journals/cmh/articles/323502 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1914521250 |e 4651009697 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"family":"Oberdieck","roleDisplay":"VerfasserIn","role":"aut","given":"Georg","display":"Oberdieck, Georg"}],"language":["eng"],"id":{"doi":["10.4171/cmh/507"],"eki":["1914521250"]},"name":{"displayForm":["Georg Oberdieck"]},"physDesc":[{"extent":"13 S."}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"relHost":[{"id":{"doi":["10.4171/CMH"],"issn":["1420-8946"],"eki":["253721504"],"zdb":["1458917-5"]},"titleAlt":[{"title":"CMH"}],"pubHistory":["1.1929 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"253721504","part":{"text":"96(2021), 1, Seite 65-77","year":"2021","extent":"13","pages":"65-77","volume":"96","issue":"1"},"note":["Gesehen am 01.09.2021"],"origin":[{"dateIssuedKey":"1929","publisherPlace":"Zürich ; Basel","publisher":"EMS Publ. House ; Birkhäuser","dateIssuedDisp":"1929-"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["ger"],"disp":"A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surfaceCommentarii mathematici Helvetici","title":[{"subtitle":"CMH ; eine Zeitschrift der Schweizerischen Mathematischen Gesellschaft","title":"Commentarii mathematici Helvetici","title_sort":"Commentarii mathematici Helvetici"}]}],"title":[{"title":"A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface","title_sort":"Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 14.01.2025"],"recId":"1914521250"} | ||
| SRT | |a OBERDIECKGLIEALGEBRA2021 | ||