Elliptic curves in Hyper-Kähler varieties

We show that the moduli space of elliptic curves of minimal degree in a general Fano variety of lines of a cubic four-fold is a non-singular curve of genus $631$. The curve admits a natural involution with connected quotient. We find that the general Fano contains precisely $3,780$ elliptic curves o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nesterov, Denis (VerfasserIn) , Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2021
In: International mathematics research notices
Year: 2021, Heft: 4, Pages: 2962-2990
ISSN:1687-0247
DOI:10.1093/imrn/rnaa016
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnaa016
Volltext
Verfasserangaben:Denis Nesterov, Georg Oberdieck

MARC

LEADER 00000caa a2200000 c 4500
001 1914521560
003 DE-627
005 20250716222046.0
007 cr uuu---uuuuu
008 250114s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/imrn/rnaa016  |2 doi 
035 |a (DE-627)1914521560 
035 |a (DE-599)KXP1914521560 
035 |a (OCoLC)1528016229 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Nesterov, Denis  |e VerfasserIn  |0 (DE-588)1279878274  |0 (DE-627)1833061500  |4 aut 
245 1 0 |a Elliptic curves in Hyper-Kähler varieties  |c Denis Nesterov, Georg Oberdieck 
264 1 |c February 2021 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 14. Februar 2020 
500 |a Gesehen am 14.01.2025 
520 |a We show that the moduli space of elliptic curves of minimal degree in a general Fano variety of lines of a cubic four-fold is a non-singular curve of genus $631$. The curve admits a natural involution with connected quotient. We find that the general Fano contains precisely $3,780$ elliptic curves of minimal degree with fixed (general) $j$-invariant. More generally, we express (modulo a transversality result) the enumerative count of elliptic curves of minimal degree in hyper-Kähler varieties with fixed $j$-invariant in terms of Gromov-Witten invariants. In $K3^{[2]}$-type this leads to explicit formulas of these counts in terms of modular forms. 
700 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
773 0 8 |i Enthalten in  |t International mathematics research notices  |d Oxford : Oxford University Press, 1991  |g (2021), 4 vom: Feb., Seite 2962-2990  |h Online-Ressource  |w (DE-627)265549639  |w (DE-600)1465368-0  |w (DE-576)254482201  |x 1687-0247  |7 nnas  |a Elliptic curves in Hyper-Kähler varieties 
773 1 8 |g year:2021  |g number:4  |g month:02  |g pages:2962-2990  |g extent:29  |a Elliptic curves in Hyper-Kähler varieties 
856 4 0 |u https://doi.org/10.1093/imrn/rnaa016  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2021 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 2  |y j 
999 |a KXP-PPN1914521560  |e 4651010199 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Elliptic curves in Hyper-Kähler varieties","title":"Elliptic curves in Hyper-Kähler varieties"}],"id":{"eki":["1914521560"],"doi":["10.1093/imrn/rnaa016"]},"name":{"displayForm":["Denis Nesterov, Georg Oberdieck"]},"physDesc":[{"extent":"29 S."}],"origin":[{"dateIssuedDisp":"February 2021","dateIssuedKey":"2021"}],"relHost":[{"title":[{"subtitle":"IMRN","title_sort":"International mathematics research notices","title":"International mathematics research notices"}],"disp":"Elliptic curves in Hyper-Kähler varietiesInternational mathematics research notices","language":["eng"],"origin":[{"dateIssuedKey":"1991","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"name":{"displayForm":["Duke University"]},"physDesc":[{"extent":"Online-Ressource"}],"corporate":[{"display":"Duke University","role":"isb","roleDisplay":"Herausgebendes Organ"}],"id":{"zdb":["1465368-0"],"eki":["265549639"],"issn":["1687-0247"]},"titleAlt":[{"title":"IMRN"}],"part":{"extent":"29","year":"2021","pages":"2962-2990","text":"(2021), 4 vom: Feb., Seite 2962-2990","issue":"4"},"recId":"265549639","note":["Gesehen am 29.01.2025"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1991 -"]}],"person":[{"display":"Nesterov, Denis","role":"aut","roleDisplay":"VerfasserIn","given":"Denis","family":"Nesterov"},{"family":"Oberdieck","role":"aut","roleDisplay":"VerfasserIn","given":"Georg","display":"Oberdieck, Georg"}],"language":["eng"],"note":["Online veröffentlicht: 14. Februar 2020","Gesehen am 14.01.2025"],"recId":"1914521560","type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a NESTEROVDEELLIPTICCU2021