Elliptic curves in Hyper-Kähler varieties
We show that the moduli space of elliptic curves of minimal degree in a general Fano variety of lines of a cubic four-fold is a non-singular curve of genus $631$. The curve admits a natural involution with connected quotient. We find that the general Fano contains precisely $3,780$ elliptic curves o...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
February 2021
|
| In: |
International mathematics research notices
Year: 2021, Heft: 4, Pages: 2962-2990 |
| ISSN: | 1687-0247 |
| DOI: | 10.1093/imrn/rnaa016 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnaa016 |
| Verfasserangaben: | Denis Nesterov, Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914521560 | ||
| 003 | DE-627 | ||
| 005 | 20250716222046.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imrn/rnaa016 |2 doi | |
| 035 | |a (DE-627)1914521560 | ||
| 035 | |a (DE-599)KXP1914521560 | ||
| 035 | |a (OCoLC)1528016229 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Nesterov, Denis |e VerfasserIn |0 (DE-588)1279878274 |0 (DE-627)1833061500 |4 aut | |
| 245 | 1 | 0 | |a Elliptic curves in Hyper-Kähler varieties |c Denis Nesterov, Georg Oberdieck |
| 264 | 1 | |c February 2021 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 14. Februar 2020 | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a We show that the moduli space of elliptic curves of minimal degree in a general Fano variety of lines of a cubic four-fold is a non-singular curve of genus $631$. The curve admits a natural involution with connected quotient. We find that the general Fano contains precisely $3,780$ elliptic curves of minimal degree with fixed (general) $j$-invariant. More generally, we express (modulo a transversality result) the enumerative count of elliptic curves of minimal degree in hyper-Kähler varieties with fixed $j$-invariant in terms of Gromov-Witten invariants. In $K3^{[2]}$-type this leads to explicit formulas of these counts in terms of modular forms. | ||
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International mathematics research notices |d Oxford : Oxford University Press, 1991 |g (2021), 4 vom: Feb., Seite 2962-2990 |h Online-Ressource |w (DE-627)265549639 |w (DE-600)1465368-0 |w (DE-576)254482201 |x 1687-0247 |7 nnas |a Elliptic curves in Hyper-Kähler varieties |
| 773 | 1 | 8 | |g year:2021 |g number:4 |g month:02 |g pages:2962-2990 |g extent:29 |a Elliptic curves in Hyper-Kähler varieties |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imrn/rnaa016 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 |y j | ||
| 999 | |a KXP-PPN1914521560 |e 4651010199 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Elliptic curves in Hyper-Kähler varieties","title":"Elliptic curves in Hyper-Kähler varieties"}],"id":{"eki":["1914521560"],"doi":["10.1093/imrn/rnaa016"]},"name":{"displayForm":["Denis Nesterov, Georg Oberdieck"]},"physDesc":[{"extent":"29 S."}],"origin":[{"dateIssuedDisp":"February 2021","dateIssuedKey":"2021"}],"relHost":[{"title":[{"subtitle":"IMRN","title_sort":"International mathematics research notices","title":"International mathematics research notices"}],"disp":"Elliptic curves in Hyper-Kähler varietiesInternational mathematics research notices","language":["eng"],"origin":[{"dateIssuedKey":"1991","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-"}],"name":{"displayForm":["Duke University"]},"physDesc":[{"extent":"Online-Ressource"}],"corporate":[{"display":"Duke University","role":"isb","roleDisplay":"Herausgebendes Organ"}],"id":{"zdb":["1465368-0"],"eki":["265549639"],"issn":["1687-0247"]},"titleAlt":[{"title":"IMRN"}],"part":{"extent":"29","year":"2021","pages":"2962-2990","text":"(2021), 4 vom: Feb., Seite 2962-2990","issue":"4"},"recId":"265549639","note":["Gesehen am 29.01.2025"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1991 -"]}],"person":[{"display":"Nesterov, Denis","role":"aut","roleDisplay":"VerfasserIn","given":"Denis","family":"Nesterov"},{"family":"Oberdieck","role":"aut","roleDisplay":"VerfasserIn","given":"Georg","display":"Oberdieck, Georg"}],"language":["eng"],"note":["Online veröffentlicht: 14. Februar 2020","Gesehen am 14.01.2025"],"recId":"1914521560","type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a NESTEROVDEELLIPTICCU2021 | ||