Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants

We use Gromov-Witten theory to study rational curves in holomorphic symplectic varieties. We present a numerical criterion for the existence of uniruled divisors swept out by rational curves in the primitive curve class of a very general holomorphic symplectic variety of K3[n] type. We also classify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oberdieck, Georg (VerfasserIn) , Shen, Junliang (VerfasserIn) , Yin, Qizheng (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 December 2019
In: Advances in mathematics
Year: 2019, Jahrgang: 357, Pages: 1-28
ISSN:1090-2082
DOI:10.1016/j.aim.2019.106829
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.aim.2019.106829
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870819304463
Volltext
Verfasserangaben:Georg Oberdieck, Junliang Shen, Qizheng Yin

MARC

LEADER 00000caa a2200000 c 4500
001 1914523644
003 DE-627
005 20250716222108.0
007 cr uuu---uuuuu
008 250114s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2019.106829  |2 doi 
035 |a (DE-627)1914523644 
035 |a (DE-599)KXP1914523644 
035 |a (OCoLC)1528016280 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants  |c Georg Oberdieck, Junliang Shen, Qizheng Yin 
264 1 |c 1 December 2019 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.01.2025 
520 |a We use Gromov-Witten theory to study rational curves in holomorphic symplectic varieties. We present a numerical criterion for the existence of uniruled divisors swept out by rational curves in the primitive curve class of a very general holomorphic symplectic variety of K3[n] type. We also classify all rational curves in the primitive curve class of the Fano variety of lines in a very general cubic 4-fold, and prove the irreducibility of the corresponding moduli space. Our proofs rely on Gromov-Witten calculations by the first author, and in the Fano case on a geometric construction of Voisin. In the Fano case a second proof via classical geometry is sketched. 
650 4 |a Gromov-Witten invariants 
650 4 |a Holomorphic symplectic varieties 
650 4 |a Hyper-Kähler 
650 4 |a Rational curves 
700 1 |a Shen, Junliang  |d 1991-  |e VerfasserIn  |0 (DE-588)1172007098  |0 (DE-627)1040834159  |0 (DE-576)513945636  |4 aut 
700 1 |a Yin, Qizheng  |d 1986-  |e VerfasserIn  |0 (DE-588)135088491X  |0 (DE-627)1912180022  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 357(2019), Artikel-ID 106829, Seite 1-28  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants 
773 1 8 |g volume:357  |g year:2019  |g elocationid:106829  |g pages:1-28  |g extent:28  |a Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants 
856 4 0 |u https://doi.org/10.1016/j.aim.2019.106829  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870819304463  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2019 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1914523644  |e 4651016359 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1914523644","note":["Gesehen am 14.01.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants","title":"Rational curves in holomorphic symplectic varieties and Gromov-Witten invariants"}],"language":["eng"],"person":[{"family":"Oberdieck","display":"Oberdieck, Georg","roleDisplay":"VerfasserIn","role":"aut","given":"Georg"},{"given":"Junliang","roleDisplay":"VerfasserIn","role":"aut","display":"Shen, Junliang","family":"Shen"},{"given":"Qizheng","role":"aut","roleDisplay":"VerfasserIn","display":"Yin, Qizheng","family":"Yin"}],"relHost":[{"title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","dateIssuedDisp":"1961-","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Rational curves in holomorphic symplectic varieties and Gromov-Witten invariantsAdvances in mathematics","language":["eng"],"id":{"zdb":["1472893-X"],"eki":["268759200"],"issn":["1090-2082"]},"part":{"extent":"28","year":"2019","pages":"1-28","text":"357(2019), Artikel-ID 106829, Seite 1-28","volume":"357"},"recId":"268759200","note":["Gesehen am 14.09.2020"],"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"id":{"eki":["1914523644"],"doi":["10.1016/j.aim.2019.106829"]},"name":{"displayForm":["Georg Oberdieck, Junliang Shen, Qizheng Yin"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"1 December 2019"}],"physDesc":[{"extent":"28 S."}]} 
SRT |a OBERDIECKGRATIONALCU1201