Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms

Let be a K3 surface with primitive curve class ⁠. We solve the relative Gromov–Witten theory of in classes and ⁠. The generating series are quasi-Jacobi forms and equal to a corresponding series of genus Gromov–Witten invariants on the Hilbert scheme of points of ⁠. This proves a special case of a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: International mathematics research notices
Year: 2019, Jahrgang: 2019, Heft: 16, Pages: 4966-5011
ISSN:1687-0247
DOI:10.1093/imrn/rnx267
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnx267
Volltext
Verfasserangaben:Georg Oberdieck

MARC

LEADER 00000caa a2200000 c 4500
001 1914524063
003 DE-627
005 20250716222111.0
007 cr uuu---uuuuu
008 250114s2019 xx |||||o 00| ||eng c
024 7 |a 10.1093/imrn/rnx267  |2 doi 
035 |a (DE-627)1914524063 
035 |a (DE-599)KXP1914524063 
035 |a (OCoLC)1528016156 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms  |c Georg Oberdieck 
246 3 3 |a Gromov-Witten theory of K3 x P 1 and Quasi-Jacobi forms 
264 1 |c 2019 
300 |a 46 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist 1 bei P1 hochgestellt 
500 |a Online veröffentlicht: 2. November 2017 
500 |a Gesehen am 14.01.2025 
520 |a Let be a K3 surface with primitive curve class ⁠. We solve the relative Gromov–Witten theory of in classes and ⁠. The generating series are quasi-Jacobi forms and equal to a corresponding series of genus Gromov–Witten invariants on the Hilbert scheme of points of ⁠. This proves a special case of a conjecture of Pandharipande and the author. The new geometric input of the paper is a genus bound for hyperelliptic curves on K3 surfaces proven by Ciliberto and Knutsen. By exploiting various formal properties we find that a key generating series is determined by the very first few coefficients. Let E be an elliptic curve. As collorary of our computations, we prove that Gromov–Witten invariants of S x E in classes (β, 1) and are coefficients (β, 2) of the reciprocal of the Igusa cusp form. We also calculate several linear Hodge integrals on the moduli space of stable maps to a K3 surface and the Gromov–Witten invariants of an abelian threefold in classes of type (1, 1, d). 
773 0 8 |i Enthalten in  |t International mathematics research notices  |d Oxford : Oxford University Press, 1991  |g 2019(2019), 16, Seite 4966-5011  |h Online-Ressource  |w (DE-627)265549639  |w (DE-600)1465368-0  |w (DE-576)254482201  |x 1687-0247  |7 nnas  |a Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms 
773 1 8 |g volume:2019  |g year:2019  |g number:16  |g pages:4966-5011  |g extent:46  |a Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms 
856 4 0 |u https://doi.org/10.1093/imrn/rnx267  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2019 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j  |y j 
999 |a KXP-PPN1914524063  |e 4651017754 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1914524063","note":["Im Titel ist 1 bei P1 hochgestellt","Online veröffentlicht: 2. November 2017","Gesehen am 14.01.2025"],"relHost":[{"disp":"Gromov-Witten theory of K3 x P1 and Quasi-Jacobi formsInternational mathematics research notices","language":["eng"],"name":{"displayForm":["Duke University"]},"origin":[{"publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","dateIssuedDisp":"1991-","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]","dateIssuedKey":"1991"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"International mathematics research notices","title":"International mathematics research notices","subtitle":"IMRN"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1991 -"],"part":{"text":"2019(2019), 16, Seite 4966-5011","extent":"46","year":"2019","pages":"4966-5011","volume":"2019","issue":"16"},"recId":"265549639","note":["Gesehen am 29.01.2025"],"corporate":[{"display":"Duke University","roleDisplay":"Herausgebendes Organ","role":"isb"}],"id":{"issn":["1687-0247"],"zdb":["1465368-0"],"eki":["265549639"]},"titleAlt":[{"title":"IMRN"}]}],"name":{"displayForm":["Georg Oberdieck"]},"titleAlt":[{"title":"Gromov-Witten theory of K3 x P 1 and Quasi-Jacobi forms"}],"id":{"doi":["10.1093/imrn/rnx267"],"eki":["1914524063"]},"physDesc":[{"extent":"46 S."}],"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019"}],"language":["eng"],"person":[{"family":"Oberdieck","display":"Oberdieck, Georg","given":"Georg","role":"aut","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms","title":"Gromov-Witten theory of K3 x P1 and Quasi-Jacobi forms"}]} 
SRT |a OBERDIECKGGROMOVWITT2019