Holomorphic anomaly equations and the Igusa cusp form conjecture
Let S be a K3 surface and let E be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
August 2018
|
| In: |
Inventiones mathematicae
Year: 2018, Jahrgang: 213, Heft: 2, Pages: 507-587 |
| ISSN: | 1432-1297 |
| DOI: | 10.1007/s00222-018-0794-0 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00222-018-0794-0 |
| Verfasserangaben: | Georg Oberdieck, Aaron Pixton |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914526341 | ||
| 003 | DE-627 | ||
| 005 | 20250716222128.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00222-018-0794-0 |2 doi | |
| 035 | |a (DE-627)1914526341 | ||
| 035 | |a (DE-599)KXP1914526341 | ||
| 035 | |a (OCoLC)1528016255 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a Holomorphic anomaly equations and the Igusa cusp form conjecture |c Georg Oberdieck, Aaron Pixton |
| 264 | 1 | |c August 2018 | |
| 300 | |a 81 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 28. Februar 2018 | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a Let S be a K3 surface and let E be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold |s \times E$$for all curve classes which are primitive in the K3 factor. In particular, we deduce the Igusa cusp form conjecture. The proof relies on new results in the Gromov-Witten theory of elliptic curves and K3 surfaces. We show the generating series of Gromov-Witten classes of an elliptic curve are cycle-valued quasimodular forms and satisfy a holomorphic anomaly equation. The quasimodularity generalizes a result by Okounkov and Pandharipande, and the holomorphic anomaly equation proves a conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of every elliptic fibration with section. The conjecture generalizes the holomorphic anomaly equations for elliptic Calabi-Yau threefolds predicted by Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive classes. | ||
| 700 | 1 | |a Pixton, Aaron C. |d 1986- |e VerfasserIn |0 (DE-588)1137719052 |0 (DE-627)895080842 |0 (DE-576)491721145 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Berlin : Springer, 1966 |g 213(2018), 2 vom: Aug., Seite 507-587 |h Online-Ressource |w (DE-627)235503525 |w (DE-600)1398341-6 |w (DE-576)061936049 |x 1432-1297 |7 nnas |a Holomorphic anomaly equations and the Igusa cusp form conjecture |
| 773 | 1 | 8 | |g volume:213 |g year:2018 |g number:2 |g month:08 |g pages:507-587 |g extent:81 |a Holomorphic anomaly equations and the Igusa cusp form conjecture |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00222-018-0794-0 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j | ||
| 999 | |a KXP-PPN1914526341 |e 4651026036 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title":"Holomorphic anomaly equations and the Igusa cusp form conjecture","title_sort":"Holomorphic anomaly equations and the Igusa cusp form conjecture"}],"relHost":[{"title":[{"title":"Inventiones mathematicae","title_sort":"Inventiones mathematicae"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Springer","dateIssuedDisp":"1966-","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1966"}],"disp":"Holomorphic anomaly equations and the Igusa cusp form conjectureInventiones mathematicae","language":["eng"],"recId":"235503525","part":{"issue":"2","volume":"213","year":"2018","extent":"81","pages":"507-587","text":"213(2018), 2 vom: Aug., Seite 507-587"},"note":["Gesehen am 01.12.05"],"pubHistory":["1.1966 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["1398341-6"],"eki":["235503525"],"issn":["1432-1297"]}}],"physDesc":[{"extent":"81 S."}],"name":{"displayForm":["Georg Oberdieck, Aaron Pixton"]},"id":{"doi":["10.1007/s00222-018-0794-0"],"eki":["1914526341"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"August 2018"}],"language":["eng"],"person":[{"display":"Oberdieck, Georg","roleDisplay":"VerfasserIn","role":"aut","given":"Georg","family":"Oberdieck"},{"given":"Aaron C.","role":"aut","roleDisplay":"VerfasserIn","display":"Pixton, Aaron C.","family":"Pixton"}],"recId":"1914526341","note":["Online veröffentlicht: 28. Februar 2018","Gesehen am 14.01.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a OBERDIECKGHOLOMORPHI2018 | ||