Holomorphic anomaly equations and the Igusa cusp form conjecture

Let S be a K3 surface and let E be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oberdieck, Georg (VerfasserIn) , Pixton, Aaron C. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2018
In: Inventiones mathematicae
Year: 2018, Jahrgang: 213, Heft: 2, Pages: 507-587
ISSN:1432-1297
DOI:10.1007/s00222-018-0794-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00222-018-0794-0
Volltext
Verfasserangaben:Georg Oberdieck, Aaron Pixton

MARC

LEADER 00000caa a2200000 c 4500
001 1914526341
003 DE-627
005 20250716222128.0
007 cr uuu---uuuuu
008 250114s2018 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00222-018-0794-0  |2 doi 
035 |a (DE-627)1914526341 
035 |a (DE-599)KXP1914526341 
035 |a (OCoLC)1528016255 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Holomorphic anomaly equations and the Igusa cusp form conjecture  |c Georg Oberdieck, Aaron Pixton 
264 1 |c August 2018 
300 |a 81 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 28. Februar 2018 
500 |a Gesehen am 14.01.2025 
520 |a Let S be a K3 surface and let E be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold   |s \times E$$for all curve classes which are primitive in the K3 factor. In particular, we deduce the Igusa cusp form conjecture. The proof relies on new results in the Gromov-Witten theory of elliptic curves and K3 surfaces. We show the generating series of Gromov-Witten classes of an elliptic curve are cycle-valued quasimodular forms and satisfy a holomorphic anomaly equation. The quasimodularity generalizes a result by Okounkov and Pandharipande, and the holomorphic anomaly equation proves a conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of every elliptic fibration with section. The conjecture generalizes the holomorphic anomaly equations for elliptic Calabi-Yau threefolds predicted by Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive classes. 
700 1 |a Pixton, Aaron C.  |d 1986-  |e VerfasserIn  |0 (DE-588)1137719052  |0 (DE-627)895080842  |0 (DE-576)491721145  |4 aut 
773 0 8 |i Enthalten in  |t Inventiones mathematicae  |d Berlin : Springer, 1966  |g 213(2018), 2 vom: Aug., Seite 507-587  |h Online-Ressource  |w (DE-627)235503525  |w (DE-600)1398341-6  |w (DE-576)061936049  |x 1432-1297  |7 nnas  |a Holomorphic anomaly equations and the Igusa cusp form conjecture 
773 1 8 |g volume:213  |g year:2018  |g number:2  |g month:08  |g pages:507-587  |g extent:81  |a Holomorphic anomaly equations and the Igusa cusp form conjecture 
856 4 0 |u https://doi.org/10.1007/s00222-018-0794-0  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2018 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1914526341  |e 4651026036 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Holomorphic anomaly equations and the Igusa cusp form conjecture","title_sort":"Holomorphic anomaly equations and the Igusa cusp form conjecture"}],"relHost":[{"title":[{"title":"Inventiones mathematicae","title_sort":"Inventiones mathematicae"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Springer","dateIssuedDisp":"1966-","publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1966"}],"disp":"Holomorphic anomaly equations and the Igusa cusp form conjectureInventiones mathematicae","language":["eng"],"recId":"235503525","part":{"issue":"2","volume":"213","year":"2018","extent":"81","pages":"507-587","text":"213(2018), 2 vom: Aug., Seite 507-587"},"note":["Gesehen am 01.12.05"],"pubHistory":["1.1966 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["1398341-6"],"eki":["235503525"],"issn":["1432-1297"]}}],"physDesc":[{"extent":"81 S."}],"name":{"displayForm":["Georg Oberdieck, Aaron Pixton"]},"id":{"doi":["10.1007/s00222-018-0794-0"],"eki":["1914526341"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"August 2018"}],"language":["eng"],"person":[{"display":"Oberdieck, Georg","roleDisplay":"VerfasserIn","role":"aut","given":"Georg","family":"Oberdieck"},{"given":"Aaron C.","role":"aut","roleDisplay":"VerfasserIn","display":"Pixton, Aaron C.","family":"Pixton"}],"recId":"1914526341","note":["Online veröffentlicht: 28. Februar 2018","Gesehen am 14.01.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a OBERDIECKGHOLOMORPHI2018