Curve counting on abelian surfaces and threefolds
We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2018
|
| In: |
Algebraic geometry
Year: 2018, Volume: 5, Issue: 4, Pages: 398-463 |
| ISSN: | 2313-1691 |
| DOI: | 10.14231/ag-2018-012 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/ag-2018-012 Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2018-4/2018-4-012.pdf |
| Author Notes: | Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914527003 | ||
| 003 | DE-627 | ||
| 005 | 20250716222132.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.14231/ag-2018-012 |2 doi | |
| 035 | |a (DE-627)1914527003 | ||
| 035 | |a (DE-599)KXP1914527003 | ||
| 035 | |a (OCoLC)1528016236 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Bryan, Jim |e VerfasserIn |0 (DE-588)1353334988 |0 (DE-627)1914522508 |4 aut | |
| 245 | 1 | 0 | |a Curve counting on abelian surfaces and threefolds |c Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin |
| 264 | 1 | |c 2018 | |
| 300 | |a 66 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating series are quasi-modular forms of pure weight. Conjectures for imprimitive classes are presented. In genus 2, the counts in all classes are proven. Special counts match the Euler characteristic calculations of the moduli spaces of stable pairs on abelian surfaces by G¨ottsche-Shende. A formula for hyperelliptic curve counting in terms of Jacobi forms is proven (modulo a transversality statement). | ||
| 700 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 700 | 1 | |a Pandharipande, Rahul |d 1969- |e VerfasserIn |0 (DE-588)1089704038 |0 (DE-627)853535884 |0 (DE-576)460049496 |4 aut | |
| 700 | 1 | |a Yin, Qizheng |d 1986- |e VerfasserIn |0 (DE-588)135088491X |0 (DE-627)1912180022 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Algebraic geometry |d Amsterdam, The Netherlands : Foundation Compositio Mathematica, 2014 |g 5(2018), 4, Seite 398-463 |h Online-Ressource |w (DE-627)788842145 |w (DE-600)2774772-4 |w (DE-576)408411538 |x 2313-1691 |7 nnas |a Curve counting on abelian surfaces and threefolds |
| 773 | 1 | 8 | |g volume:5 |g year:2018 |g number:4 |g pages:398-463 |g extent:66 |a Curve counting on abelian surfaces and threefolds |
| 856 | 4 | 0 | |u https://doi.org/10.14231/ag-2018-012 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://content.algebraicgeometry.nl/2018-4/2018-4-012.pdf |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 2 | ||
| 999 | |a KXP-PPN1914527003 |e 4651027911 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 14.01.2025"],"recId":"1914527003","type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Curve counting on abelian surfaces and threefolds","title":"Curve counting on abelian surfaces and threefolds"}],"person":[{"family":"Bryan","display":"Bryan, Jim","given":"Jim","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Oberdieck","given":"Georg","roleDisplay":"VerfasserIn","role":"aut","display":"Oberdieck, Georg"},{"given":"Rahul","role":"aut","roleDisplay":"VerfasserIn","display":"Pandharipande, Rahul","family":"Pandharipande"},{"family":"Yin","display":"Yin, Qizheng","roleDisplay":"VerfasserIn","role":"aut","given":"Qizheng"}],"language":["eng"],"name":{"displayForm":["Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin"]},"origin":[{"dateIssuedDisp":"2018","dateIssuedKey":"2018"}],"id":{"eki":["1914527003"],"doi":["10.14231/ag-2018-012"]},"physDesc":[{"extent":"66 S."}],"relHost":[{"title":[{"title":"Algebraic geometry","title_sort":"Algebraic geometry"}],"language":["eng"],"disp":"Curve counting on abelian surfaces and threefoldsAlgebraic geometry","name":{"displayForm":["Foundation Compositio Mathematica"]},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Foundation Compositio Mathematica","dateIssuedDisp":"2014-","publisherPlace":"Amsterdam, The Netherlands","dateIssuedKey":"2014"}],"id":{"zdb":["2774772-4"],"eki":["788842145"],"issn":["2313-1691"]},"note":["Gesehen am 13.10.2016"],"recId":"788842145","part":{"volume":"5","issue":"4","text":"5(2018), 4, Seite 398-463","pages":"398-463","year":"2018","extent":"66"},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2014 -"]}]} | ||
| SRT | |a BRYANJIMOBCURVECOUNT2018 | ||