Curve counting on abelian surfaces and threefolds

We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating...

Full description

Saved in:
Bibliographic Details
Main Authors: Bryan, Jim (Author) , Oberdieck, Georg (Author) , Pandharipande, Rahul (Author) , Yin, Qizheng (Author)
Format: Article (Journal)
Language:English
Published: 2018
In: Algebraic geometry
Year: 2018, Volume: 5, Issue: 4, Pages: 398-463
ISSN:2313-1691
DOI:10.14231/ag-2018-012
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/ag-2018-012
Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2018-4/2018-4-012.pdf
Get full text
Author Notes:Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin

MARC

LEADER 00000caa a2200000 c 4500
001 1914527003
003 DE-627
005 20250716222132.0
007 cr uuu---uuuuu
008 250114s2018 xx |||||o 00| ||eng c
024 7 |a 10.14231/ag-2018-012  |2 doi 
035 |a (DE-627)1914527003 
035 |a (DE-599)KXP1914527003 
035 |a (OCoLC)1528016236 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bryan, Jim  |e VerfasserIn  |0 (DE-588)1353334988  |0 (DE-627)1914522508  |4 aut 
245 1 0 |a Curve counting on abelian surfaces and threefolds  |c Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin 
264 1 |c 2018 
300 |a 66 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.01.2025 
520 |a We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating series are quasi-modular forms of pure weight. Conjectures for imprimitive classes are presented. In genus 2, the counts in all classes are proven. Special counts match the Euler characteristic calculations of the moduli spaces of stable pairs on abelian surfaces by G¨ottsche-Shende. A formula for hyperelliptic curve counting in terms of Jacobi forms is proven (modulo a transversality statement). 
700 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
700 1 |a Pandharipande, Rahul  |d 1969-  |e VerfasserIn  |0 (DE-588)1089704038  |0 (DE-627)853535884  |0 (DE-576)460049496  |4 aut 
700 1 |a Yin, Qizheng  |d 1986-  |e VerfasserIn  |0 (DE-588)135088491X  |0 (DE-627)1912180022  |4 aut 
773 0 8 |i Enthalten in  |t Algebraic geometry  |d Amsterdam, The Netherlands : Foundation Compositio Mathematica, 2014  |g 5(2018), 4, Seite 398-463  |h Online-Ressource  |w (DE-627)788842145  |w (DE-600)2774772-4  |w (DE-576)408411538  |x 2313-1691  |7 nnas  |a Curve counting on abelian surfaces and threefolds 
773 1 8 |g volume:5  |g year:2018  |g number:4  |g pages:398-463  |g extent:66  |a Curve counting on abelian surfaces and threefolds 
856 4 0 |u https://doi.org/10.14231/ag-2018-012  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://content.algebraicgeometry.nl/2018-4/2018-4-012.pdf  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a Article 
994 |a 2018 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 2 
999 |a KXP-PPN1914527003  |e 4651027911 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 14.01.2025"],"recId":"1914527003","type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Curve counting on abelian surfaces and threefolds","title":"Curve counting on abelian surfaces and threefolds"}],"person":[{"family":"Bryan","display":"Bryan, Jim","given":"Jim","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Oberdieck","given":"Georg","roleDisplay":"VerfasserIn","role":"aut","display":"Oberdieck, Georg"},{"given":"Rahul","role":"aut","roleDisplay":"VerfasserIn","display":"Pandharipande, Rahul","family":"Pandharipande"},{"family":"Yin","display":"Yin, Qizheng","roleDisplay":"VerfasserIn","role":"aut","given":"Qizheng"}],"language":["eng"],"name":{"displayForm":["Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin"]},"origin":[{"dateIssuedDisp":"2018","dateIssuedKey":"2018"}],"id":{"eki":["1914527003"],"doi":["10.14231/ag-2018-012"]},"physDesc":[{"extent":"66 S."}],"relHost":[{"title":[{"title":"Algebraic geometry","title_sort":"Algebraic geometry"}],"language":["eng"],"disp":"Curve counting on abelian surfaces and threefoldsAlgebraic geometry","name":{"displayForm":["Foundation Compositio Mathematica"]},"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisher":"Foundation Compositio Mathematica","dateIssuedDisp":"2014-","publisherPlace":"Amsterdam, The Netherlands","dateIssuedKey":"2014"}],"id":{"zdb":["2774772-4"],"eki":["788842145"],"issn":["2313-1691"]},"note":["Gesehen am 13.10.2016"],"recId":"788842145","part":{"volume":"5","issue":"4","text":"5(2018), 4, Seite 398-463","pages":"398-463","year":"2018","extent":"66"},"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2014 -"]}]} 
SRT |a BRYANJIMOBCURVECOUNT2018