Curve counting on abelian surfaces and threefolds

We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bryan, Jim (VerfasserIn) , Oberdieck, Georg (VerfasserIn) , Pandharipande, Rahul (VerfasserIn) , Yin, Qizheng (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Algebraic geometry
Year: 2018, Jahrgang: 5, Heft: 4, Pages: 398-463
ISSN:2313-1691
DOI:10.14231/ag-2018-012
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.14231/ag-2018-012
Verlag, lizenzpflichtig, Volltext: http://content.algebraicgeometry.nl/2018-4/2018-4-012.pdf
Volltext
Verfasserangaben:Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin
Beschreibung
Zusammenfassung:We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov-Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating series are quasi-modular forms of pure weight. Conjectures for imprimitive classes are presented. In genus 2, the counts in all classes are proven. Special counts match the Euler characteristic calculations of the moduli spaces of stable pairs on abelian surfaces by G¨ottsche-Shende. A formula for hyperelliptic curve counting in terms of Jacobi forms is proven (modulo a transversality statement).
Beschreibung:Gesehen am 14.01.2025
Beschreibung:Online Resource
ISSN:2313-1691
DOI:10.14231/ag-2018-012