On reduced stable pair invariants
Let X = S x E be the product of a K3 surface S and an elliptic curve E. Reduced stable pair invariants of X can be defined via (1) cutting down the reduced virtual class with incidence conditions or (2) the Behrend function weighted Euler characteristic of the quotient of the moduli space by the tra...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
June 2018
|
| In: |
Mathematische Zeitschrift
Year: 2018, Jahrgang: 289, Heft: 1, Pages: 323-353 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-017-1953-5 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00209-017-1953-5 |
| Verfasserangaben: | Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914527534 | ||
| 003 | DE-627 | ||
| 005 | 20250716222143.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00209-017-1953-5 |2 doi | |
| 035 | |a (DE-627)1914527534 | ||
| 035 | |a (DE-599)KXP1914527534 | ||
| 035 | |a (OCoLC)1528016281 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a On reduced stable pair invariants |c Georg Oberdieck |
| 264 | 1 | |c June 2018 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 20. Oktober 2017 | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a Let X = S x E be the product of a K3 surface S and an elliptic curve E. Reduced stable pair invariants of X can be defined via (1) cutting down the reduced virtual class with incidence conditions or (2) the Behrend function weighted Euler characteristic of the quotient of the moduli space by the translation action of E. We show that (2) arises naturally as the degree of a virtual class, and that the invariants (1) and (2) agree. This has applications to deformation invariance, rationality and a DT/PT correspondence for reduced invariants of S x E. | ||
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Berlin : Springer, 1918 |g 289(2018), 1, Seite 323-353 |h Online-Ressource |w (DE-627)254630812 |w (DE-600)1462134-4 |w (DE-576)074529722 |x 1432-1823 |7 nnas |a On reduced stable pair invariants |
| 773 | 1 | 8 | |g volume:289 |g year:2018 |g number:1 |g pages:323-353 |g extent:31 |a On reduced stable pair invariants |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00209-017-1953-5 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1914527534 |e 4651032095 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1914527534","note":["Online veröffentlicht: 20. Oktober 2017","Gesehen am 14.01.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"On reduced stable pair invariants","title_sort":"On reduced stable pair invariants"}],"language":["eng"],"person":[{"family":"Oberdieck","display":"Oberdieck, Georg","roleDisplay":"VerfasserIn","role":"aut","given":"Georg"}],"relHost":[{"disp":"On reduced stable pair invariantsMathematische Zeitschrift","language":["eng"],"origin":[{"publisher":"Springer","dateIssuedDisp":"1918-","dateIssuedKey":"1918","publisherPlace":"Berlin ; Heidelberg"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Mathematische Zeitschrift","title_sort":"Mathematische Zeitschrift"}],"id":{"eki":["254630812"],"zdb":["1462134-4"],"issn":["1432-1823"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1918 -"],"recId":"254630812","part":{"issue":"1","volume":"289","extent":"31","year":"2018","pages":"323-353","text":"289(2018), 1, Seite 323-353"},"note":["Gesehen am 02.12.05"]}],"name":{"displayForm":["Georg Oberdieck"]},"id":{"eki":["1914527534"],"doi":["10.1007/s00209-017-1953-5"]},"physDesc":[{"extent":"31 S."}],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"June 2018"}]} | ||
| SRT | |a OBERDIECKGONREDUCEDS2018 | ||