Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration
Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S × E where E is an elliptic curve. In the primitive case, our c...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Chapter/Article |
| Language: | English |
| Published: |
2016
|
| In: |
K3 surfaces and their moduli
Year: 2016, Pages: 245-278 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-29959-4_10 |
| Author Notes: | G. Oberdieck and R. Pandharipande |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1914528271 | ||
| 003 | DE-627 | ||
| 005 | 20250716222151.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250114s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/978-3-319-29959-4_10 |2 doi | |
| 035 | |a (DE-627)1914528271 | ||
| 035 | |a (DE-599)KXP1914528271 | ||
| 035 | |a (OCoLC)1528016206 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration |c G. Oberdieck and R. Pandharipande |
| 264 | 1 | |c 2016 | |
| 300 | |a 34 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.01.2025 | ||
| 520 | |a Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S × E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form χ10 and matches a prediction via heterotic duality by Katz, Klemm, and Vafa. In imprimitive cases, our conjecture suggests a new structure for the complete theory of descendent integration for K3 surfaces. Via the Gromov-Witten/Pairs correspondence, a conjecture for the reduced stable pairs theory of S × E is also presented. Speculations about the motivic stable pairs theory of S × E are made. The reduced Gromov-Witten theory of the Hilbert scheme of points of S is much richer than S × E. The 2-point function of Hilbd(S) determines a matrix with trace equal to the partition function of S × E. A conjectural form for the full matrix is given. | ||
| 700 | 1 | |a Pandharipande, Rahul |d 1969- |e VerfasserIn |0 (DE-588)1089704038 |0 (DE-627)853535884 |0 (DE-576)460049496 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t K3 surfaces and their moduli |d [Cham] : Birkhäuser, 2016 |g (2016), Seite 245-278 |h Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource) |w (DE-627)1656982226 |w (DE-576)470387602 |z 9783319299594 |7 nnam |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration |
| 773 | 1 | 8 | |g year:2016 |g pages:245-278 |g extent:34 |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration |
| 856 | 4 | 0 | |u https://link.springer.com/chapter/10.1007/978-3-319-29959-4_10 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250114 | ||
| 993 | |a BookComponentPart | ||
| 994 | |a 2016 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |p 1 |x j | ||
| 999 | |a KXP-PPN1914528271 |e 4651035086 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Gesehen am 14.01.2025"],"recId":"1914528271","type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration","title_sort":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration"}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"2016"}],"name":{"displayForm":["G. Oberdieck and R. Pandharipande"]},"id":{"eki":["1914528271"],"doi":["10.1007/978-3-319-29959-4_10"]},"physDesc":[{"extent":"34 S."}],"relHost":[{"id":{"isbn":["9783319299594"],"doi":["10.1007/978-3-319-29959-4"],"eki":["1656982226"]},"recId":"1656982226","part":{"text":"(2016), Seite 245-278","pages":"245-278","extent":"34","year":"2016"},"note":["Description based upon print version of record"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"title_sort":"K3 surfaces and their moduli","title":"K3 surfaces and their moduli"}],"disp":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integrationK3 surfaces and their moduli","language":["eng"],"person":[{"family":"Faber","roleDisplay":"Hrsg.","role":"edt","given":"Carel","display":"Faber, Carel"},{"display":"Farkas, Gavril","given":"Gavril","roleDisplay":"Hrsg.","role":"edt","family":"Farkas"},{"family":"Geer","display":"Geer, Gerard van der","roleDisplay":"Hrsg.","role":"edt","given":"Gerard van der"}],"physDesc":[{"extent":"Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource)"}],"origin":[{"dateIssuedDisp":"2016","publisher":"Birkhäuser","dateIssuedKey":"2016","publisherPlace":"[Cham]"}],"name":{"displayForm":["edited by Carel Faber, Gavril Farkas, Gerard van der Geer"]}}],"person":[{"given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg","family":"Oberdieck"},{"family":"Pandharipande","display":"Pandharipande, Rahul","role":"aut","roleDisplay":"VerfasserIn","given":"Rahul"}],"language":["eng"]} | ||
| SRT | |a OBERDIECKGCURVECOUNT2016 | ||