Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration

Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S × E where E is an elliptic curve. In the primitive case, our c...

Full description

Saved in:
Bibliographic Details
Main Authors: Oberdieck, Georg (Author) , Pandharipande, Rahul (Author)
Format: Chapter/Article
Language:English
Published: 2016
In: K3 surfaces and their moduli
Year: 2016, Pages: 245-278
Online Access:Verlag, lizenzpflichtig, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-29959-4_10
Get full text
Author Notes:G. Oberdieck and R. Pandharipande

MARC

LEADER 00000caa a2200000 c 4500
001 1914528271
003 DE-627
005 20250716222151.0
007 cr uuu---uuuuu
008 250114s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/978-3-319-29959-4_10  |2 doi 
035 |a (DE-627)1914528271 
035 |a (DE-599)KXP1914528271 
035 |a (OCoLC)1528016206 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration  |c G. Oberdieck and R. Pandharipande 
264 1 |c 2016 
300 |a 34 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.01.2025 
520 |a Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S × E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form χ10 and matches a prediction via heterotic duality by Katz, Klemm, and Vafa. In imprimitive cases, our conjecture suggests a new structure for the complete theory of descendent integration for K3 surfaces. Via the Gromov-Witten/Pairs correspondence, a conjecture for the reduced stable pairs theory of S × E is also presented. Speculations about the motivic stable pairs theory of S × E are made. The reduced Gromov-Witten theory of the Hilbert scheme of points of S is much richer than S × E. The 2-point function of Hilbd(S) determines a matrix with trace equal to the partition function of S × E. A conjectural form for the full matrix is given. 
700 1 |a Pandharipande, Rahul  |d 1969-  |e VerfasserIn  |0 (DE-588)1089704038  |0 (DE-627)853535884  |0 (DE-576)460049496  |4 aut 
773 0 8 |i Enthalten in  |t K3 surfaces and their moduli  |d [Cham] : Birkhäuser, 2016  |g (2016), Seite 245-278  |h Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource)  |w (DE-627)1656982226  |w (DE-576)470387602  |z 9783319299594  |7 nnam  |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration 
773 1 8 |g year:2016  |g pages:245-278  |g extent:34  |a Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration 
856 4 0 |u https://link.springer.com/chapter/10.1007/978-3-319-29959-4_10  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250114 
993 |a BookComponentPart 
994 |a 2016 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |p 1  |x j 
999 |a KXP-PPN1914528271  |e 4651035086 
BIB |a Y 
JSO |a {"note":["Gesehen am 14.01.2025"],"recId":"1914528271","type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration","title_sort":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integration"}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"2016"}],"name":{"displayForm":["G. Oberdieck and R. Pandharipande"]},"id":{"eki":["1914528271"],"doi":["10.1007/978-3-319-29959-4_10"]},"physDesc":[{"extent":"34 S."}],"relHost":[{"id":{"isbn":["9783319299594"],"doi":["10.1007/978-3-319-29959-4"],"eki":["1656982226"]},"recId":"1656982226","part":{"text":"(2016), Seite 245-278","pages":"245-278","extent":"34","year":"2016"},"note":["Description based upon print version of record"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"title":[{"title_sort":"K3 surfaces and their moduli","title":"K3 surfaces and their moduli"}],"disp":"Curve counting on K3 × E, the Igusa Cusp form χ10, and descendent integrationK3 surfaces and their moduli","language":["eng"],"person":[{"family":"Faber","roleDisplay":"Hrsg.","role":"edt","given":"Carel","display":"Faber, Carel"},{"display":"Farkas, Gavril","given":"Gavril","roleDisplay":"Hrsg.","role":"edt","family":"Farkas"},{"family":"Geer","display":"Geer, Gerard van der","roleDisplay":"Hrsg.","role":"edt","given":"Gerard van der"}],"physDesc":[{"extent":"Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource)"}],"origin":[{"dateIssuedDisp":"2016","publisher":"Birkhäuser","dateIssuedKey":"2016","publisherPlace":"[Cham]"}],"name":{"displayForm":["edited by Carel Faber, Gavril Farkas, Gerard van der Geer"]}}],"person":[{"given":"Georg","role":"aut","roleDisplay":"VerfasserIn","display":"Oberdieck, Georg","family":"Oberdieck"},{"family":"Pandharipande","display":"Pandharipande, Rahul","role":"aut","roleDisplay":"VerfasserIn","given":"Rahul"}],"language":["eng"]} 
SRT |a OBERDIECKGCURVECOUNT2016