DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics

Single-cell transcriptomics and spatially-resolved imaging/sequencing technologies have revolutionized biomedical research. However, they suffer from lack of spatial information and a trade-off of resolution and gene coverage, respectively. We propose DOT, a multi-objective optimization framework fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rahimi, Arezou (VerfasserIn) , Vale Silva, Luis A. (VerfasserIn) , Fälth Savitski, Maria (VerfasserIn) , Tanevski, Jovan (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 June 2024
In: Nature Communications
Year: 2024, Jahrgang: 15, Pages: 1-15
ISSN:2041-1723
DOI:10.1038/s41467-024-48868-z
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-024-48868-z
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-024-48868-z
Volltext
Verfasserangaben:Arezou Rahimi, Luis A. Vale-Silva, Maria Fälth Savitski, Jovan Tanevski & Julio Saez-Rodriguez
Beschreibung
Zusammenfassung:Single-cell transcriptomics and spatially-resolved imaging/sequencing technologies have revolutionized biomedical research. However, they suffer from lack of spatial information and a trade-off of resolution and gene coverage, respectively. We propose DOT, a multi-objective optimization framework for transferring cellular features across these data modalities, thus integrating their complementary information. DOT uses genes beyond those common to the data modalities, exploits the local spatial context, transfers spatial features beyond cell-type information, and infers absolute/relative abundance of cell populations at tissue locations. Thus, DOT bridges single-cell transcriptomics data with both high- and low-resolution spatially-resolved data. Moreover, DOT combines practical aspects related to cell composition, heterogeneity, technical effects, and integration of prior knowledge. Our fast implementation based on the Frank-Wolfe algorithm achieves state-of-the-art or improved performance in localizing cell features in high- and low-resolution spatial data and estimating the expression of unmeasured genes in low-coverage spatial data.
Beschreibung:Gesehen am 20.01.2025
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-024-48868-z