Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia: a multisite machine learning analysis

The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structural MRI, clinical, sociodemographic, and genetic dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong, Mark Sen (VerfasserIn) , Rokicki, Jaroslav (VerfasserIn) , Dwyer, Dominic (VerfasserIn) , Papiol, Sergi (VerfasserIn) , Streit, Fabian (VerfasserIn) , Rietschel, Marcella (VerfasserIn) , Wobrock, Thomas (VerfasserIn) , Müller-Myhsok, Bertram (VerfasserIn) , Falkai, Peter (VerfasserIn) , Westlye, Lars Tjelta (VerfasserIn) , Andreassen, Ole A. (VerfasserIn) , Palaniyappan, Lena (VerfasserIn) , Schneider-Axmann, Thomas (VerfasserIn) , Hasan, Alkomiet (VerfasserIn) , Schwarz, Emanuel (VerfasserIn) , Koutsouleris, Nikolaos (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 April 2024
In: Translational Psychiatry
Year: 2024, Jahrgang: 14, Pages: 1-11
ISSN:2158-3188
DOI:10.1038/s41398-024-02903-1
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41398-024-02903-1
Verlag, kostenfrei, Volltext: http://www.nature.com/articles/s41398-024-02903-1
Volltext
Verfasserangaben:Mark Sen Dong, Jaroslav Rokicki, Dominic Dwyer, Sergi Papiol, Fabian Streit, Marcella Rietschel, Thomas Wobrock, Bertram Müller-Myhsok, Peter Falkai, Lars Tjelta Westlye, Ole A. Andreassen, Lena Palaniyappan, Thomas Schneider-Axmann, Alkomiet Hasan, Emanuel Schwarz and Nikolaos Koutsouleris

MARC

LEADER 00000caa a2200000 c 4500
001 191566618X
003 DE-627
005 20250716224538.0
007 cr uuu---uuuuu
008 250127s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41398-024-02903-1  |2 doi 
035 |a (DE-627)191566618X 
035 |a (DE-599)KXP191566618X 
035 |a (OCoLC)1528017705 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Dong, Mark Sen  |e VerfasserIn  |0 (DE-588)1354540077  |0 (DE-627)1915667429  |4 aut 
245 1 0 |a Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia  |b a multisite machine learning analysis  |c Mark Sen Dong, Jaroslav Rokicki, Dominic Dwyer, Sergi Papiol, Fabian Streit, Marcella Rietschel, Thomas Wobrock, Bertram Müller-Myhsok, Peter Falkai, Lars Tjelta Westlye, Ole A. Andreassen, Lena Palaniyappan, Thomas Schneider-Axmann, Alkomiet Hasan, Emanuel Schwarz and Nikolaos Koutsouleris 
264 1 |c 25 April 2024 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.01.2025 
520 |a The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structural MRI, clinical, sociodemographic, and genetic data using artificial intelligence. We developed and cross-validated rTMS response prediction models in patients with schizophrenia drawn from the multisite RESIS trial. The models incorporated pre-treatment sMRI, clinical, sociodemographic, and polygenic risk score (PRS) data. Patients were randomly assigned to receive active (N = 45) or sham (N = 47) rTMS treatment. The prediction target was individual response, defined as ≥20% reduction in pre-treatment negative symptom sum scores of the Positive and Negative Syndrome Scale. Our multimodal sequential prediction workflow achieved a balanced accuracy (BAC) of 94% (non-responders: 92%, responders: 95%) in the active-treated group and 50% in the sham-treated group. The clinical, clinical + PRS, and sMRI-based classifiers yielded BACs of 65%, 76%, and 80%, respectively. Apparent sadness, inability to feel, educational attainment PRS, and unemployment were most predictive of non-response in the clinical + PRS model, while grey matter density reductions in the default mode, limbic networks, and the cerebellum were most predictive in the sMRI model. Our sequential modelling approach provided superior predictive performance while minimising the diagnostic burden in the clinical setting. Predictive patterns suggest that rTMS responders may have higher levels of brain grey matter in the default mode and salience networks which increases their likelihood of profiting from plasticity-inducing brain stimulation methods, such as rTMS. The future clinical implementation of our models requires findings to be replicated at the international scale using stratified clinical trial designs. 
650 4 |a Predictive markers 
650 4 |a Schizophrenia 
700 1 |a Rokicki, Jaroslav  |e VerfasserIn  |4 aut 
700 1 |a Dwyer, Dominic  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a Papiol, Sergi  |e VerfasserIn  |0 (DE-588)1275938868  |0 (DE-627)1892141841  |4 aut 
700 1 |a Streit, Fabian  |d 1982-  |e VerfasserIn  |0 (DE-588)113749199X  |0 (DE-627)894689843  |0 (DE-576)491387970  |4 aut 
700 1 |a Rietschel, Marcella  |d 1957-  |e VerfasserIn  |0 (DE-588)112785751  |0 (DE-627)505574020  |0 (DE-576)289742307  |4 aut 
700 1 |a Wobrock, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Müller-Myhsok, Bertram  |e VerfasserIn  |4 aut 
700 1 |a Falkai, Peter  |e VerfasserIn  |4 aut 
700 1 |a Westlye, Lars Tjelta  |e VerfasserIn  |4 aut 
700 1 |a Andreassen, Ole A.  |e VerfasserIn  |4 aut 
700 1 |a Palaniyappan, Lena  |e VerfasserIn  |4 aut 
700 1 |a Schneider-Axmann, Thomas  |e VerfasserIn  |4 aut 
700 1 |8 2\p  |a Hasan, Alkomiet  |d 1982-  |e VerfasserIn  |0 (DE-588)137655428  |0 (DE-627)594517168  |0 (DE-576)304519200  |4 aut 
700 1 |a Schwarz, Emanuel  |e VerfasserIn  |0 (DE-588)1055051260  |0 (DE-627)792581040  |0 (DE-576)411121596  |4 aut 
700 1 |a Koutsouleris, Nikolaos  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Translational Psychiatry  |d London : Nature Publishing Group, 2011  |g 14(2024), Artikel-ID 196, Seite 1-11  |h Online-Ressource  |w (DE-627)660807378  |w (DE-600)2609311-X  |w (DE-576)345003462  |x 2158-3188  |7 nnas  |a Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia a multisite machine learning analysis 
773 1 8 |g volume:14  |g year:2024  |g elocationid:196  |g pages:1-11  |g extent:11  |a Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia a multisite machine learning analysis 
856 4 0 |u https://doi.org/10.1038/s41398-024-02903-1  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.nature.com/articles/s41398-024-02903-1  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250127 
993 |a Article 
994 |a 2024 
998 |g 1055051260  |a Schwarz, Emanuel  |m 1055051260:Schwarz, Emanuel  |d 60000  |e 60000PS1055051260  |k 0/60000/  |p 15 
998 |g 112785751  |a Rietschel, Marcella  |m 112785751:Rietschel, Marcella  |d 60000  |e 60000PR112785751  |k 0/60000/  |p 6 
998 |g 113749199X  |a Streit, Fabian  |m 113749199X:Streit, Fabian  |d 60000  |e 60000PS113749199X  |k 0/60000/  |p 5 
999 |a KXP-PPN191566618X  |e 465664157X 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Dong, Mark Sen","family":"Dong","given":"Mark Sen","role":"aut"},{"role":"aut","given":"Jaroslav","display":"Rokicki, Jaroslav","family":"Rokicki"},{"role":"aut","given":"Dominic","display":"Dwyer, Dominic","family":"Dwyer"},{"role":"aut","given":"Sergi","family":"Papiol","display":"Papiol, Sergi"},{"family":"Streit","display":"Streit, Fabian","given":"Fabian","role":"aut"},{"display":"Rietschel, Marcella","family":"Rietschel","role":"aut","given":"Marcella"},{"role":"aut","given":"Thomas","display":"Wobrock, Thomas","family":"Wobrock"},{"given":"Bertram","role":"aut","display":"Müller-Myhsok, Bertram","family":"Müller-Myhsok"},{"role":"aut","given":"Peter","family":"Falkai","display":"Falkai, Peter"},{"display":"Westlye, Lars Tjelta","family":"Westlye","role":"aut","given":"Lars Tjelta"},{"given":"Ole A.","role":"aut","display":"Andreassen, Ole A.","family":"Andreassen"},{"family":"Palaniyappan","display":"Palaniyappan, Lena","given":"Lena","role":"aut"},{"given":"Thomas","role":"aut","family":"Schneider-Axmann","display":"Schneider-Axmann, Thomas"},{"given":"Alkomiet","role":"aut","display":"Hasan, Alkomiet","family":"Hasan"},{"role":"aut","given":"Emanuel","family":"Schwarz","display":"Schwarz, Emanuel"},{"role":"aut","given":"Nikolaos","family":"Koutsouleris","display":"Koutsouleris, Nikolaos"}],"language":["eng"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"25 April 2024"}],"note":["Gesehen am 27.01.2025"],"title":[{"title_sort":"Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia","subtitle":"a multisite machine learning analysis","title":"Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"660807378","id":{"zdb":["2609311-X"],"issn":["2158-3188"],"eki":["660807378"]},"origin":[{"publisherPlace":"London","dateIssuedKey":"2011","publisher":"Nature Publishing Group","dateIssuedDisp":"2011-"}],"note":["Gesehen am 17.05.11"],"pubHistory":["1.2011 -"],"title":[{"title":"Translational Psychiatry","title_sort":"Translational Psychiatry"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Multimodal workflows optimally predict response to repetitive transcranial magnetic stimulation in patients with schizophrenia a multisite machine learning analysisTranslational Psychiatry","language":["eng"],"part":{"volume":"14","extent":"11","text":"14(2024), Artikel-ID 196, Seite 1-11","year":"2024","pages":"1-11"}}],"recId":"191566618X","name":{"displayForm":["Mark Sen Dong, Jaroslav Rokicki, Dominic Dwyer, Sergi Papiol, Fabian Streit, Marcella Rietschel, Thomas Wobrock, Bertram Müller-Myhsok, Peter Falkai, Lars Tjelta Westlye, Ole A. Andreassen, Lena Palaniyappan, Thomas Schneider-Axmann, Alkomiet Hasan, Emanuel Schwarz and Nikolaos Koutsouleris"]},"physDesc":[{"noteIll":"Illustrationen","extent":"11 S."}],"id":{"doi":["10.1038/s41398-024-02903-1"],"eki":["191566618X"]}} 
SRT |a DONGMARKSEMULTIMODAL2520