AI-supported autonomous uterus reconstructions: first application in MRI using 3D SPACE with iterative denoising

Rationale and Objectives - T2-weighted imaging in at least two orthogonal planes is recommended for assessment of the uterus. To determine whether a convolutional neural network-based algorithm could be used for the re-constructions of uterus axes derived from a 3D SPACE with iterative denoising. -...

Full description

Saved in:
Bibliographic Details
Main Authors: Hausmann, Daniel (Author) , Lerch, Aline (Author) , Hitziger, Sebastian (Author) , Farkas, Monika (Author) , Weiland, Elisabeth (Author) , Lemke, Andreas (Author) , Grimm, Maximilian (Author) , Kubik-Huch, Rahel A. (Author)
Format: Article (Journal)
Language:English
Published: April 2024
In: Academic radiology
Year: 2024, Volume: 31, Issue: 4, Pages: 1400-1409
ISSN:1878-4046
DOI:10.1016/j.acra.2023.09.035
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.acra.2023.09.035
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S1076633223005147
Get full text
Author Notes:Daniel Hausmann, Aline Lerch, Sebastian Hitziger, Monika Farkas, Elisabeth Weiland, Andreas Lemke, Maximilian Grimm, Rahel A. Kubik-Huch

MARC

LEADER 00000caa a2200000 c 4500
001 1915732921
003 DE-627
005 20251015124144.0
007 cr uuu---uuuuu
008 250128s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.acra.2023.09.035  |2 doi 
035 |a (DE-627)1915732921 
035 |a (DE-599)KXP1915732921 
035 |a (OCoLC)1528017537 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Hausmann, Daniel  |d 1981-  |e VerfasserIn  |0 (DE-588)1012080293  |0 (DE-627)660894432  |0 (DE-576)344897125  |4 aut 
245 1 0 |a AI-supported autonomous uterus reconstructions  |b first application in MRI using 3D SPACE with iterative denoising  |c Daniel Hausmann, Aline Lerch, Sebastian Hitziger, Monika Farkas, Elisabeth Weiland, Andreas Lemke, Maximilian Grimm, Rahel A. Kubik-Huch 
264 1 |c April 2024 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 3. November 2023, Artikelversion: 10. April 2024 
500 |a Gesehen am 28.01.2025 
520 |a Rationale and Objectives - T2-weighted imaging in at least two orthogonal planes is recommended for assessment of the uterus. To determine whether a convolutional neural network-based algorithm could be used for the re-constructions of uterus axes derived from a 3D SPACE with iterative denoising. - Materials and Methods - 50 patients aged 18-81 (mean: 42) years who underwent an MRI examination of the uterus participated voluntarily in this prospective study after informed consent. In addition to a standard MRI pelvis protocol, a 3D SPACE research application sequence was acquired in sagittal orientation. Reconstructions for both the cervix and the cavum in the short and long axes were performed by a research trainee (T), an experienced radiologist (E), and the prototype software (P). In the next step, the reconstructions were evaluated anonymously by two experienced readers according to 5-point-Likert-Scales. In addition, the length of the cervical canal, the length of the cavum and the distance between the tube angles were measured on all reconstructions. Interobserver agreement was assessed for all ratings. - Results - For all axes, significant differences were found between the scores of the reconstructions by research T, E and P. P received higher scores and was preferred significantly more often with the exception of the comparison of the reconstruction Cervix short of E (Cervix short: P vs. T: p = 0.02; P vs. E: p = 0.26; Cervix long: P vs. T: p = 0.01; P vs. E: p < 0.01; Cavum short: P vs. T: p = 0.01; P vs. E: p = 0.02; Cavum long: P vs. T: p < 0.01; P vs. E: p < 0.01). Regarding the measured diameters, (length of cervical canal/cavum/distance between tube angles) significantly larger diameters were recorded for P compared to E and T (Cervix long (mm): T: 25.43; E: 25.65; P: 26.65; Cavum short (mm): T: 26.24; E: 25.04; P: 27.33; Cavum long (mm): T: 31.98; E: 32.91; P: 34.41; P vs. T: p < 0.01); P vs. E: p = 0.04). Moderate to substantial agreement was found between Reader 1 and Reader 2 (range: 0.39-0.67). - Conclusion - P was able to reconstruct the axes at least as well as or better than E and T. P could thereby lead to workflow facilitation and enable more efficient reporting of uterine MRI. 
650 4 |a 3D SPACE 
650 4 |a Algorithm 
650 4 |a Artificial intelligence 
650 4 |a Female Pelvis 
650 4 |a Magnetic Resonance Imaging 
700 1 |a Lerch, Aline  |e VerfasserIn  |4 aut 
700 1 |a Hitziger, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Farkas, Monika  |e VerfasserIn  |4 aut 
700 1 |a Weiland, Elisabeth  |e VerfasserIn  |4 aut 
700 1 |a Lemke, Andreas  |e VerfasserIn  |0 (DE-588)1014144787  |0 (DE-627)705174360  |0 (DE-576)348356862  |4 aut 
700 1 |a Grimm, Maximilian  |e VerfasserIn  |4 aut 
700 1 |a Kubik-Huch, Rahel A.  |e VerfasserIn  |0 (DE-588)1089647719  |0 (DE-627)853417555  |0 (DE-576)460104225  |4 aut 
773 0 8 |i Enthalten in  |t Academic radiology  |d Philadelphia, PA [u.a.] : Elsevier, 1994  |g 31(2024), 4 vom: Apr., Seite 1400-1409  |h Online-Ressource  |w (DE-627)331018667  |w (DE-600)2050425-1  |w (DE-576)271497602  |x 1878-4046  |7 nnas  |a AI-supported autonomous uterus reconstructions first application in MRI using 3D SPACE with iterative denoising 
773 1 8 |g volume:31  |g year:2024  |g number:4  |g month:04  |g pages:1400-1409  |g extent:10  |a AI-supported autonomous uterus reconstructions first application in MRI using 3D SPACE with iterative denoising 
856 4 0 |u https://doi.org/10.1016/j.acra.2023.09.035  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1076633223005147  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250128 
993 |a Article 
994 |a 2024 
998 |g 1012080293  |a Hausmann, Daniel  |m 1012080293:Hausmann, Daniel  |d 60000  |d 65200  |e 60000PH1012080293  |e 65200PH1012080293  |k 0/60000/  |k 1/60000/65200/  |p 1  |x j 
999 |a KXP-PPN1915732921  |e 4657178938 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"relHost":[{"title":[{"title_sort":"Academic radiology","subtitle":"official journal of the Association of University Radiologists, the Society of Chairs of Academic Radiology Departments, the Association of Program Directors in Radiology, the American Alliance of Academic Chief Residents in Radiology, the Alliance of Medical Student Educators in Radiology, the Radiology Research Alliance, the Radiology Alliance for Health Services Research, and the Medical Image Computing and Computer-Assisted Intervention Society","title":"Academic radiology"}],"note":["Gesehen am 18.04.17"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"AI-supported autonomous uterus reconstructions first application in MRI using 3D SPACE with iterative denoisingAcademic radiology","recId":"331018667","language":["eng"],"pubHistory":["1.1994 -"],"part":{"year":"2024","pages":"1400-1409","issue":"4","volume":"31","text":"31(2024), 4 vom: Apr., Seite 1400-1409","extent":"10"},"origin":[{"dateIssuedDisp":"1994-","publisher":"Elsevier ; Assoc. of University Radiologists","dateIssuedKey":"1994","publisherPlace":"Philadelphia, PA [u.a.] ; Oak Brook, Ill."}],"id":{"issn":["1878-4046"],"zdb":["2050425-1"],"eki":["331018667"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Daniel Hausmann, Aline Lerch, Sebastian Hitziger, Monika Farkas, Elisabeth Weiland, Andreas Lemke, Maximilian Grimm, Rahel A. Kubik-Huch"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"April 2024"}],"id":{"doi":["10.1016/j.acra.2023.09.035"],"eki":["1915732921"]},"note":["Online verfügbar: 3. November 2023, Artikelversion: 10. April 2024","Gesehen am 28.01.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1915732921","person":[{"display":"Hausmann, Daniel","roleDisplay":"VerfasserIn","role":"aut","family":"Hausmann","given":"Daniel"},{"role":"aut","display":"Lerch, Aline","roleDisplay":"VerfasserIn","given":"Aline","family":"Lerch"},{"display":"Hitziger, Sebastian","roleDisplay":"VerfasserIn","role":"aut","family":"Hitziger","given":"Sebastian"},{"family":"Farkas","given":"Monika","display":"Farkas, Monika","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Elisabeth","family":"Weiland","role":"aut","roleDisplay":"VerfasserIn","display":"Weiland, Elisabeth"},{"family":"Lemke","given":"Andreas","display":"Lemke, Andreas","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Maximilian","family":"Grimm","role":"aut","roleDisplay":"VerfasserIn","display":"Grimm, Maximilian"},{"display":"Kubik-Huch, Rahel A.","roleDisplay":"VerfasserIn","role":"aut","family":"Kubik-Huch","given":"Rahel A."}],"title":[{"title":"AI-supported autonomous uterus reconstructions","subtitle":"first application in MRI using 3D SPACE with iterative denoising","title_sort":"AI-supported autonomous uterus reconstructions"}]} 
SRT |a HAUSMANNDAAISUPPORTE2024