A descent method for nonsmooth multiobjective optimization in hilbert spaces

The efficient optimization method for locally Lipschitz continuous multiobjective optimization problems from Gebken and Peitz (J Optim Theory Appl 188:696-723, 2021) is extended from finite-dimensional problems to general Hilbert spaces. The method iteratively computes Pareto critical points, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sonntag, Konstantin (VerfasserIn) , Gebken, Bennet (VerfasserIn) , Müller, Georg (VerfasserIn) , Peitz, Sebastian (VerfasserIn) , Volkwein, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 September 2024
In: Journal of optimization theory and applications
Year: 2024, Jahrgang: 203, Heft: 1, Pages: 455-487
ISSN:1573-2878
DOI:10.1007/s10957-024-02520-4
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10957-024-02520-4
Volltext
Verfasserangaben:Konstantin Sonntag, Bennet Gebken, Georg Müller, Sebastian Peitz, Stefan Volkwein
Beschreibung
Zusammenfassung:The efficient optimization method for locally Lipschitz continuous multiobjective optimization problems from Gebken and Peitz (J Optim Theory Appl 188:696-723, 2021) is extended from finite-dimensional problems to general Hilbert spaces. The method iteratively computes Pareto critical points, where in each iteration, an approximation of the Clarke subdifferential is computed in an efficient manner and then used to compute a common descent direction for all objective functions. To prove convergence, we present some new optimality results for nonsmooth multiobjective optimization problems in Hilbert spaces. Using these, we can show that every accumulation point of the sequence generated by our algorithm is Pareto critical under common assumptions. Computational efficiency for finding Pareto critical points is numerically demonstrated for multiobjective optimal control of an obstacle problem.
Beschreibung:Gesehen am 19.02.2025
Beschreibung:Online Resource
ISSN:1573-2878
DOI:10.1007/s10957-024-02520-4