Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension: on GIT quotients of the symplectic group, and the associahedron
We address the general problem of studying linear stability and bifurcations of periodic orbits for Hamiltonian systems of arbitrary degrees of freedom. We study the topology of the GIT sequence introduced by the first author and Urs Frauenfelder in [7], in arbitrary dimension. In particular, we not...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
20 September 2024
|
| In: |
Mathematische Zeitschrift
Year: 2024, Jahrgang: 308, Heft: 2, Pages: 34-1-34-27 |
| ISSN: | 1432-1823 |
| DOI: | 10.1007/s00209-024-03585-7 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00209-024-03585-7 |
| Verfasserangaben: | Agustin Moreno, Francesco Ruscelli |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1917730284 | ||
| 003 | DE-627 | ||
| 005 | 20250716233108.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250220s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00209-024-03585-7 |2 doi | |
| 035 | |a (DE-627)1917730284 | ||
| 035 | |a (DE-599)KXP1917730284 | ||
| 035 | |a (OCoLC)1528019274 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Moreno, Agustin |e VerfasserIn |0 (DE-588)1182689116 |0 (DE-627)1662857764 |4 aut | |
| 245 | 1 | 0 | |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension |b on GIT quotients of the symplectic group, and the associahedron |c Agustin Moreno, Francesco Ruscelli |
| 264 | 1 | |c 20 September 2024 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 20.02.2025 | ||
| 520 | |a We address the general problem of studying linear stability and bifurcations of periodic orbits for Hamiltonian systems of arbitrary degrees of freedom. We study the topology of the GIT sequence introduced by the first author and Urs Frauenfelder in [7], in arbitrary dimension. In particular, we note that the combinatorics encoding the linear stability of periodic orbits is governed by a quotient of the associahedron. Our approach gives a topological/combinatorial proof of the classical Krein-Moser theorem, and refines it for the case of symmetric orbits. | ||
| 700 | 1 | |a Ruscelli, Francesco |e VerfasserIn |0 (DE-588)1357007825 |0 (DE-627)1917730632 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Berlin : Springer, 1918 |g 308(2024), 2, Artikel-ID 34, Seite 34-1-34-27 |h Online-Ressource |w (DE-627)254630812 |w (DE-600)1462134-4 |w (DE-576)074529722 |x 1432-1823 |7 nnas |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedron |
| 773 | 1 | 8 | |g volume:308 |g year:2024 |g number:2 |g elocationid:34 |g pages:34-1-34-27 |g extent:27 |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedron |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00209-024-03585-7 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250220 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1357007825 |a Ruscelli, Francesco |m 1357007825:Ruscelli, Francesco |d 110000 |d 110400 |e 110000PR1357007825 |e 110400PR1357007825 |k 0/110000/ |k 1/110000/110400/ |p 2 |y j | ||
| 998 | |g 1182689116 |a Moreno, Agustin |m 1182689116:Moreno, Agustin |d 110000 |d 110400 |e 110000PM1182689116 |e 110400PM1182689116 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1917730284 |e 466779965X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Agustin Moreno, Francesco Ruscelli"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1917730284","title":[{"title":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension","subtitle":"on GIT quotients of the symplectic group, and the associahedron","title_sort":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension"}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"20 September 2024"}],"relHost":[{"id":{"zdb":["1462134-4"],"eki":["254630812"],"issn":["1432-1823"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1918-","publisher":"Springer","dateIssuedKey":"1918"}],"note":["Gesehen am 02.12.05"],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1918 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2024","text":"308(2024), 2, Artikel-ID 34, Seite 34-1-34-27","pages":"34-1-34-27","extent":"27","volume":"308","issue":"2"},"title":[{"title_sort":"Mathematische Zeitschrift","title":"Mathematische Zeitschrift"}],"disp":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedronMathematische Zeitschrift","recId":"254630812"}],"id":{"eki":["1917730284"],"doi":["10.1007/s00209-024-03585-7"]},"physDesc":[{"extent":"27 S."}],"note":["Gesehen am 20.02.2025"],"person":[{"given":"Agustin","display":"Moreno, Agustin","role":"aut","family":"Moreno","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Ruscelli, Francesco","given":"Francesco","roleDisplay":"VerfasserIn","family":"Ruscelli"}]} | ||
| SRT | |a MORENOAGUSCOMBINATOR2020 | ||