Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension: on GIT quotients of the symplectic group, and the associahedron

We address the general problem of studying linear stability and bifurcations of periodic orbits for Hamiltonian systems of arbitrary degrees of freedom. We study the topology of the GIT sequence introduced by the first author and Urs Frauenfelder in [7], in arbitrary dimension. In particular, we not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moreno, Agustin (VerfasserIn) , Ruscelli, Francesco (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 September 2024
In: Mathematische Zeitschrift
Year: 2024, Jahrgang: 308, Heft: 2, Pages: 34-1-34-27
ISSN:1432-1823
DOI:10.1007/s00209-024-03585-7
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00209-024-03585-7
Volltext
Verfasserangaben:Agustin Moreno, Francesco Ruscelli

MARC

LEADER 00000caa a2200000 c 4500
001 1917730284
003 DE-627
005 20250716233108.0
007 cr uuu---uuuuu
008 250220s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00209-024-03585-7  |2 doi 
035 |a (DE-627)1917730284 
035 |a (DE-599)KXP1917730284 
035 |a (OCoLC)1528019274 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Moreno, Agustin  |e VerfasserIn  |0 (DE-588)1182689116  |0 (DE-627)1662857764  |4 aut 
245 1 0 |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension  |b on GIT quotients of the symplectic group, and the associahedron  |c Agustin Moreno, Francesco Ruscelli 
264 1 |c 20 September 2024 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.02.2025 
520 |a We address the general problem of studying linear stability and bifurcations of periodic orbits for Hamiltonian systems of arbitrary degrees of freedom. We study the topology of the GIT sequence introduced by the first author and Urs Frauenfelder in [7], in arbitrary dimension. In particular, we note that the combinatorics encoding the linear stability of periodic orbits is governed by a quotient of the associahedron. Our approach gives a topological/combinatorial proof of the classical Krein-Moser theorem, and refines it for the case of symmetric orbits. 
700 1 |a Ruscelli, Francesco  |e VerfasserIn  |0 (DE-588)1357007825  |0 (DE-627)1917730632  |4 aut 
773 0 8 |i Enthalten in  |t Mathematische Zeitschrift  |d Berlin : Springer, 1918  |g 308(2024), 2, Artikel-ID 34, Seite 34-1-34-27  |h Online-Ressource  |w (DE-627)254630812  |w (DE-600)1462134-4  |w (DE-576)074529722  |x 1432-1823  |7 nnas  |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedron 
773 1 8 |g volume:308  |g year:2024  |g number:2  |g elocationid:34  |g pages:34-1-34-27  |g extent:27  |a Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedron 
856 4 0 |u https://doi.org/10.1007/s00209-024-03585-7  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250220 
993 |a Article 
994 |a 2024 
998 |g 1357007825  |a Ruscelli, Francesco  |m 1357007825:Ruscelli, Francesco  |d 110000  |d 110400  |e 110000PR1357007825  |e 110400PR1357007825  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
998 |g 1182689116  |a Moreno, Agustin  |m 1182689116:Moreno, Agustin  |d 110000  |d 110400  |e 110000PM1182689116  |e 110400PM1182689116  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1917730284  |e 466779965X 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Agustin Moreno, Francesco Ruscelli"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1917730284","title":[{"title":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension","subtitle":"on GIT quotients of the symplectic group, and the associahedron","title_sort":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension"}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"20 September 2024"}],"relHost":[{"id":{"zdb":["1462134-4"],"eki":["254630812"],"issn":["1432-1823"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedDisp":"1918-","publisher":"Springer","dateIssuedKey":"1918"}],"note":["Gesehen am 02.12.05"],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1918 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2024","text":"308(2024), 2, Artikel-ID 34, Seite 34-1-34-27","pages":"34-1-34-27","extent":"27","volume":"308","issue":"2"},"title":[{"title_sort":"Mathematische Zeitschrift","title":"Mathematische Zeitschrift"}],"disp":"Combinatorics of linear stability for Hamiltonian systems in arbitrary dimension on GIT quotients of the symplectic group, and the associahedronMathematische Zeitschrift","recId":"254630812"}],"id":{"eki":["1917730284"],"doi":["10.1007/s00209-024-03585-7"]},"physDesc":[{"extent":"27 S."}],"note":["Gesehen am 20.02.2025"],"person":[{"given":"Agustin","display":"Moreno, Agustin","role":"aut","family":"Moreno","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Ruscelli, Francesco","given":"Francesco","roleDisplay":"VerfasserIn","family":"Ruscelli"}]} 
SRT |a MORENOAGUSCOMBINATOR2020