Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T

The objective of this study was to evaluate a high-resolution deep-learning (DL)-based diffusion-weighted imaging (DWI) sequence for breast magnetic resonance imaging (MRI) in comparison to a standard DWI sequence (DWIStd) at 1.5 T. It is a prospective study of 38 breast cancer patients, who were sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Olthof, Susann-Cathrin (VerfasserIn) , Weiland, Elisabeth (VerfasserIn) , Benkert, Thomas (VerfasserIn) , Wessling, Daniel (VerfasserIn) , Leyhr, Daniel (VerfasserIn) , Afat, Saif (VerfasserIn) , Nikolaou, Konstantin (VerfasserIn) , Preibsch, Heike (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 August 2024
In: Diagnostics
Year: 2024, Jahrgang: 14, Heft: 16, Pages: 1-10
ISSN:2075-4418
DOI:10.3390/diagnostics14161742
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/diagnostics14161742
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2075-4418/14/16/1742
Volltext
Verfasserangaben:Susann-Cathrin Olthof, Elisabeth Weiland, Thomas Benkert, Daniel Wessling, Daniel Leyhr, Saif Afat, Konstantin Nikolaou and Heike Preibsch

MARC

LEADER 00000caa a2200000 c 4500
001 1917873891
003 DE-627
005 20250716233313.0
007 cr uuu---uuuuu
008 250224s2024 xx |||||o 00| ||eng c
024 7 |a 10.3390/diagnostics14161742  |2 doi 
035 |a (DE-627)1917873891 
035 |a (DE-599)KXP1917873891 
035 |a (OCoLC)1528019023 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Olthof, Susann-Cathrin  |e VerfasserIn  |0 (DE-588)1357414196  |0 (DE-627)191787460X  |4 aut 
245 1 0 |a Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T  |c Susann-Cathrin Olthof, Elisabeth Weiland, Thomas Benkert, Daniel Wessling, Daniel Leyhr, Saif Afat, Konstantin Nikolaou and Heike Preibsch 
264 1 |c 10 August 2024 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.02.2025 
520 |a The objective of this study was to evaluate a high-resolution deep-learning (DL)-based diffusion-weighted imaging (DWI) sequence for breast magnetic resonance imaging (MRI) in comparison to a standard DWI sequence (DWIStd) at 1.5 T. It is a prospective study of 38 breast cancer patients, who were scanned with DWIStd and DWIDL. Both DWI sequences were scored for image quality, sharpness, artifacts, contrast, noise, and diagnostic confidence with a Likert-scale from 1 (non-diagnostic) to 5 (excellent). The lesion diameter was evaluated on b 800 DWI, apparent diffusion coefficient (ADC), and the second subtraction (SUB) of the contrast-enhanced T1 VIBE. SNR was also calculated. Statistics included correlation analyses and paired t-tests. High-resolution DWIDL offered significantly superior image quality, sharpness, noise, contrast, and diagnostic confidence (each p < 0.02)). Artifacts were significantly higher in DWIDL by one reader (M = 4.62 vs. 4.36 Likert scale, p < 0.01) without affecting the diagnostic confidence. SNR was higher in DWIDL for b 50 and ADC maps (each p = 0.07). Acquisition time was reduced by 22% in DWIDL. The lesion diameters in DWI b 800DL and Std and ADCDL and Std were respectively 6% lower compared to the 2nd SUB. A DL-based diffusion sequence at 1.5 T in breast MRI offers a higher resolution and a faster acquisition, including only minimally more artefacts without affecting the diagnostic confidence. 
650 4 |a breast MRI at 1.5 T 
650 4 |a high-resolution deep-learning DWI 
650 4 |a histological proven breast cancer patients 
700 1 |a Weiland, Elisabeth  |e VerfasserIn  |4 aut 
700 1 |a Benkert, Thomas  |e VerfasserIn  |4 aut 
700 1 |a Wessling, Daniel  |e VerfasserIn  |0 (DE-588)1307202861  |0 (DE-627)186760521X  |4 aut 
700 1 |a Leyhr, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Afat, Saif  |e VerfasserIn  |4 aut 
700 1 |a Nikolaou, Konstantin  |e VerfasserIn  |4 aut 
700 1 |a Preibsch, Heike  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Diagnostics  |d Basel : MDPI, 2011  |g 14(2024), 16, Artikel-ID 1742, Seite 1-10  |h Online-Ressource  |w (DE-627)718627814  |w (DE-600)2662336-5  |w (DE-576)365413917  |x 2075-4418  |7 nnas  |a Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T 
773 1 8 |g volume:14  |g year:2024  |g number:16  |g elocationid:1742  |g pages:1-10  |g extent:10  |a Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T 
856 4 0 |u https://doi.org/10.3390/diagnostics14161742  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2075-4418/14/16/1742  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250224 
993 |a Article 
994 |a 2024 
998 |g 1307202861  |a Wessling, Daniel  |m 1307202861:Wessling, Daniel  |d 910000  |d 911100  |e 910000PW1307202861  |e 911100PW1307202861  |k 0/910000/  |k 1/910000/911100/  |p 4 
999 |a KXP-PPN1917873891  |e 4670013548 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Susann-Cathrin Olthof, Elisabeth Weiland, Thomas Benkert, Daniel Wessling, Daniel Leyhr, Saif Afat, Konstantin Nikolaou and Heike Preibsch"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"10 August 2024"}],"id":{"doi":["10.3390/diagnostics14161742"],"eki":["1917873891"]},"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"relHost":[{"id":{"eki":["718627814"],"zdb":["2662336-5"],"issn":["2075-4418"]},"origin":[{"publisherPlace":"Basel","publisher":"MDPI","dateIssuedKey":"2011","dateIssuedDisp":"2011-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Diagnostics","title":"Diagnostics","subtitle":"open access journal"}],"recId":"718627814","language":["eng"],"disp":"Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 TDiagnostics","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.05.2020"],"part":{"year":"2024","issue":"16","pages":"1-10","volume":"14","text":"14(2024), 16, Artikel-ID 1742, Seite 1-10","extent":"10"},"pubHistory":["1.2011 -"]}],"person":[{"display":"Olthof, Susann-Cathrin","roleDisplay":"VerfasserIn","role":"aut","family":"Olthof","given":"Susann-Cathrin"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Weiland, Elisabeth","given":"Elisabeth","family":"Weiland"},{"role":"aut","display":"Benkert, Thomas","roleDisplay":"VerfasserIn","given":"Thomas","family":"Benkert"},{"roleDisplay":"VerfasserIn","display":"Wessling, Daniel","role":"aut","family":"Wessling","given":"Daniel"},{"display":"Leyhr, Daniel","roleDisplay":"VerfasserIn","role":"aut","family":"Leyhr","given":"Daniel"},{"roleDisplay":"VerfasserIn","display":"Afat, Saif","role":"aut","family":"Afat","given":"Saif"},{"family":"Nikolaou","given":"Konstantin","roleDisplay":"VerfasserIn","display":"Nikolaou, Konstantin","role":"aut"},{"given":"Heike","family":"Preibsch","role":"aut","roleDisplay":"VerfasserIn","display":"Preibsch, Heike"}],"title":[{"title_sort":"Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T","title":"Optimizing image quality with high-resolution, deep-learning-based diffusion-weighted imaging in breast cancer patients at 1.5 T"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 24.02.2025"],"language":["eng"],"recId":"1917873891"} 
SRT |a OLTHOFSUSAOPTIMIZING1020