Privacy-preserving edge federated learning for intelligent mobile-health systems

Machine Learning (ML) algorithms are generally designed for scenarios in which all data is stored in one data center, where the training is performed. However, in many applications, e.g., in the healthcare domain, the training data is distributed among several entities, e.g., different hospitals or...

Full description

Saved in:
Bibliographic Details
Main Authors: Aminifar, Amin (Author) , Shokri, Matin (Author) , Aminifar, Amir (Author)
Format: Article (Journal)
Language:English
Published: December 2024
In: Future generation computer systems
Year: 2024, Volume: 161, Pages: 625-637
ISSN:1872-7115
DOI:10.1016/j.future.2024.07.035
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.future.2024.07.035
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0167739X24003972
Get full text
Author Notes:Amin Aminifar, Matin Shokri, Amir Aminifar

MARC

LEADER 00000caa a2200000 c 4500
001 1917874979
003 DE-627
005 20250716233316.0
007 cr uuu---uuuuu
008 250224s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.future.2024.07.035  |2 doi 
035 |a (DE-627)1917874979 
035 |a (DE-599)KXP1917874979 
035 |a (OCoLC)1528019542 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Aminifar, Amin  |e VerfasserIn  |0 (DE-588)1357414544  |0 (DE-627)1917875835  |4 aut 
245 1 0 |a Privacy-preserving edge federated learning for intelligent mobile-health systems  |c Amin Aminifar, Matin Shokri, Amir Aminifar 
264 1 |c December 2024 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 23. Juli 2024, Artikelversion: 7. August 2024 
500 |a Gesehen am 24.02.2025 
520 |a Machine Learning (ML) algorithms are generally designed for scenarios in which all data is stored in one data center, where the training is performed. However, in many applications, e.g., in the healthcare domain, the training data is distributed among several entities, e.g., different hospitals or patients’ mobile devices/sensors. At the same time, transferring the data to a central location for learning is certainly not an option, due to privacy concerns and legal issues, and in certain cases, because of the communication and computation overheads. Federated Learning (FL) is the state-of-the-art collaborative ML approach for training an ML model across multiple parties holding local data samples, without sharing them. However, enabling learning from distributed data over such edge Internet of Things (IoT) systems (e.g., mobile-health and wearable technologies, involving sensitive personal/medical data) in a privacy-preserving fashion presents a major challenge mainly due to their stringent resource constraints, i.e., limited computing capacity, communication bandwidth, memory storage, and battery lifetime. In this paper, we propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure. We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon’s AWS cloud platform based on the seizure detection application in epilepsy monitoring using wearable technologies. 
650 4 |a Edge federated learning 
650 4 |a Mobile-health technologies 
650 4 |a Privacy-preserving machine learning 
700 1 |a Shokri, Matin  |e VerfasserIn  |4 aut 
700 1 |a Aminifar, Amir  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Future generation computer systems  |d Amsterdam [u.a.] : Elsevier Science, 1984  |g 161(2024) vom: Dez., Seite 625-637  |h Online-Ressource  |w (DE-627)320604284  |w (DE-600)2020551-X  |w (DE-576)094399212  |x 1872-7115  |7 nnas  |a Privacy-preserving edge federated learning for intelligent mobile-health systems 
773 1 8 |g volume:161  |g year:2024  |g month:12  |g pages:625-637  |g extent:13  |a Privacy-preserving edge federated learning for intelligent mobile-health systems 
856 4 0 |u https://doi.org/10.1016/j.future.2024.07.035  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0167739X24003972  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250224 
993 |a Article 
994 |a 2024 
998 |g 1357414544  |a Aminifar, Amin  |m 1357414544:Aminifar, Amin  |d 700000  |d 720000  |e 700000PA1357414544  |e 720000PA1357414544  |k 0/700000/  |k 1/700000/720000/  |p 1  |x j 
999 |a KXP-PPN1917874979  |e 4670016032 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Privacy-preserving edge federated learning for intelligent mobile-health systems","title":"Privacy-preserving edge federated learning for intelligent mobile-health systems"}],"person":[{"family":"Aminifar","given":"Amin","display":"Aminifar, Amin","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Shokri, Matin","role":"aut","family":"Shokri","given":"Matin"},{"family":"Aminifar","given":"Amir","roleDisplay":"VerfasserIn","display":"Aminifar, Amir","role":"aut"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online verfügbar: 23. Juli 2024, Artikelversion: 7. August 2024","Gesehen am 24.02.2025"],"language":["eng"],"recId":"1917874979","origin":[{"dateIssuedDisp":"December 2024","dateIssuedKey":"2024"}],"id":{"doi":["10.1016/j.future.2024.07.035"],"eki":["1917874979"]},"name":{"displayForm":["Amin Aminifar, Matin Shokri, Amir Aminifar"]},"physDesc":[{"extent":"13 S.","noteIll":"Illustrationen"}],"relHost":[{"part":{"pages":"625-637","year":"2024","extent":"13","volume":"161","text":"161(2024) vom: Dez., Seite 625-637"},"pubHistory":["1.1984 - 29.2013; Vol. 30.2014 -"],"language":["eng"],"recId":"320604284","physDesc":[{"extent":"Online-Ressource"}],"disp":"Privacy-preserving edge federated learning for intelligent mobile-health systemsFuture generation computer systems","type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["320604284"],"zdb":["2020551-X"],"issn":["1872-7115"]},"origin":[{"publisher":"Elsevier Science","dateIssuedKey":"1984","dateIssuedDisp":"1984-","publisherPlace":"Amsterdam [u.a.]"}],"title":[{"title_sort":"Future generation computer systems","title":"Future generation computer systems"}]}]} 
SRT |a AMINIFARAMPRIVACYPRE2024