BioM2: biologically informed multi-stage machine learning for phenotype prediction using omics data
Navigating the complex landscape of high-dimensional omics data with machine learning models presents a significant challenge. The integration of biological domain knowledge into these models has shown promise in creating more meaningful stratifications of predictor variables, leading to algorithms...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
September 2024
|
| In: |
Briefings in bioinformatics
Year: 2024, Jahrgang: 25, Heft: 5, Pages: 1-13 |
| ISSN: | 1477-4054 |
| DOI: | 10.1093/bib/bbae384 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bib/bbae384 Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fbib%2Fbbae384&DestApp=DOI&SrcAppSID=EUW1ED0B78lzEE8v6L4y2Dp3dRHbk&SrcJTitle=BRIEFINGS+IN+BIOINFORMATICS&DestDOIRegistrantName=Oxford+University+Press |
| Verfasserangaben: | Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1917876912 | ||
| 003 | DE-627 | ||
| 005 | 20250716233321.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250224s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/bib/bbae384 |2 doi | |
| 035 | |a (DE-627)1917876912 | ||
| 035 | |a (DE-599)KXP1917876912 | ||
| 035 | |a (OCoLC)1528019570 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Zhang, Shunjie |e VerfasserIn |0 (DE-588)1357415532 |0 (DE-627)1917879091 |4 aut | |
| 245 | 1 | 0 | |a BioM2 |b biologically informed multi-stage machine learning for phenotype prediction using omics data |c Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen |
| 264 | 1 | |c September 2024 | |
| 300 | |b Illustrationen | ||
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online verfügbar: 10. August 2024 | ||
| 500 | |a Gesehen am 24.02.2025 | ||
| 520 | |a Navigating the complex landscape of high-dimensional omics data with machine learning models presents a significant challenge. The integration of biological domain knowledge into these models has shown promise in creating more meaningful stratifications of predictor variables, leading to algorithms that are both more accurate and generalizable. However, the wider availability of machine learning tools capable of incorporating such biological knowledge remains limited. Addressing this gap, we introduce BioM2, a novel R package designed for biologically informed multistage machine learning. BioM2 uniquely leverages biological information to effectively stratify and aggregate high-dimensional biological data in the context of machine learning. Demonstrating its utility with genome-wide DNA methylation and transcriptome-wide gene expression data, BioM2 has shown to enhance predictive performance, surpassing traditional machine learning models that operate without the integration of biological knowledge. A key feature of BioM2 is its ability to rank predictor variables within biological categories, specifically Gene Ontology pathways. This functionality not only aids in the interpretability of the results but also enables a subsequent modular network analysis of these variables, shedding light on the intricate systems-level biology underpinning the predictive outcome. We have proposed a biologically informed multistage machine learning framework termed BioM2 for phenotype prediction based on omics data. BioM2 has been incorporated into the BioM2 CRAN package (https://cran.r-project.org/web/packages/BioM2/index.html). | ||
| 650 | 4 | |a BioM2 | |
| 650 | 4 | |a BRAIN | |
| 650 | 4 | |a DNA methylome | |
| 650 | 4 | |a EXPRESSION | |
| 650 | 4 | |a Gene Ontology | |
| 650 | 4 | |a machine learning | |
| 650 | 4 | |a PATHWAY | |
| 650 | 4 | |a phenotype prediction | |
| 650 | 4 | |a transcriptome | |
| 700 | 1 | |a Li, Pan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Wang, Shenghan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Zhu, Jijun |e VerfasserIn |4 aut | |
| 700 | 1 | |a Huang, Zhongting |e VerfasserIn |4 aut | |
| 700 | 1 | |a Cai, Fuqiang |e VerfasserIn |4 aut | |
| 700 | 1 | |a Freidel, Sebastian |e VerfasserIn |0 (DE-588)1348631392 |0 (DE-627)1908866101 |4 aut | |
| 700 | 1 | |a Ling, Fei |e VerfasserIn |4 aut | |
| 700 | 1 | |a Schwarz, Emanuel |e VerfasserIn |0 (DE-588)1055051260 |0 (DE-627)792581040 |0 (DE-576)411121596 |4 aut | |
| 700 | 1 | |a Chen, Junfang |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Briefings in bioinformatics |d Oxford [u.a.] : Oxford University Press, 2000 |g 25(2024), 5 vom: Sept., Artikel-ID bbae384, Seite 1-13 |h Online-Ressource |w (DE-627)325359237 |w (DE-600)2036055-1 |w (DE-576)099210959 |x 1477-4054 |7 nnas |a BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics data |
| 773 | 1 | 8 | |g volume:25 |g year:2024 |g number:5 |g month:09 |g elocationid:bbae384 |g pages:1-13 |g extent:13 |a BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics data |
| 856 | 4 | 0 | |u https://doi.org/10.1093/bib/bbae384 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fbib%2Fbbae384&DestApp=DOI&SrcAppSID=EUW1ED0B78lzEE8v6L4y2Dp3dRHbk&SrcJTitle=BRIEFINGS+IN+BIOINFORMATICS&DestDOIRegistrantName=Oxford+University+Press |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250224 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1055051260 |a Schwarz, Emanuel |m 1055051260:Schwarz, Emanuel |d 60000 |e 60000PS1055051260 |k 0/60000/ |p 9 | ||
| 999 | |a KXP-PPN1917876912 |e 4670019619 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"September 2024","dateIssuedKey":"2024"}],"relHost":[{"title":[{"title":"Briefings in bioinformatics","title_sort":"Briefings in bioinformatics"}],"disp":"BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics dataBriefings in bioinformatics","language":["eng"],"note":["Gesehen am 18.01.24"],"part":{"volume":"25","text":"25(2024), 5 vom: Sept., Artikel-ID bbae384, Seite 1-13","extent":"13","issue":"5","year":"2024","pages":"1-13"},"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"publisher":"Oxford University Press ; Henry Stewart Publ.","dateIssuedDisp":"2000-","publisherPlace":"Oxford [u.a.] ; London [u.a.]","dateIssuedKey":"2000"}],"pubHistory":["1.2000 -"],"recId":"325359237","id":{"issn":["1477-4054"],"zdb":["2036055-1"],"eki":["325359237"]}}],"physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"note":["Online verfügbar: 10. August 2024","Gesehen am 24.02.2025"],"language":["eng"],"id":{"eki":["1917876912"],"doi":["10.1093/bib/bbae384"]},"recId":"1917876912","name":{"displayForm":["Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"display":"Zhang, Shunjie","roleDisplay":"VerfasserIn","given":"Shunjie","family":"Zhang","role":"aut"},{"given":"Pan","roleDisplay":"VerfasserIn","display":"Li, Pan","family":"Li","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Shenghan","display":"Wang, Shenghan","family":"Wang","role":"aut"},{"display":"Zhu, Jijun","roleDisplay":"VerfasserIn","given":"Jijun","family":"Zhu","role":"aut"},{"role":"aut","family":"Huang","roleDisplay":"VerfasserIn","given":"Zhongting","display":"Huang, Zhongting"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Fuqiang","display":"Cai, Fuqiang","family":"Cai"},{"family":"Freidel","roleDisplay":"VerfasserIn","display":"Freidel, Sebastian","given":"Sebastian","role":"aut"},{"family":"Ling","given":"Fei","roleDisplay":"VerfasserIn","display":"Ling, Fei","role":"aut"},{"role":"aut","given":"Emanuel","roleDisplay":"VerfasserIn","display":"Schwarz, Emanuel","family":"Schwarz"},{"role":"aut","family":"Chen","display":"Chen, Junfang","roleDisplay":"VerfasserIn","given":"Junfang"}],"title":[{"subtitle":"biologically informed multi-stage machine learning for phenotype prediction using omics data","title":"BioM2","title_sort":"BioM2"}]} | ||
| SRT | |a ZHANGSHUNJBIOM22024 | ||