BioM2: biologically informed multi-stage machine learning for phenotype prediction using omics data

Navigating the complex landscape of high-dimensional omics data with machine learning models presents a significant challenge. The integration of biological domain knowledge into these models has shown promise in creating more meaningful stratifications of predictor variables, leading to algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Shunjie (VerfasserIn) , Li, Pan (VerfasserIn) , Wang, Shenghan (VerfasserIn) , Zhu, Jijun (VerfasserIn) , Huang, Zhongting (VerfasserIn) , Cai, Fuqiang (VerfasserIn) , Freidel, Sebastian (VerfasserIn) , Ling, Fei (VerfasserIn) , Schwarz, Emanuel (VerfasserIn) , Chen, Junfang (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 2024
In: Briefings in bioinformatics
Year: 2024, Jahrgang: 25, Heft: 5, Pages: 1-13
ISSN:1477-4054
DOI:10.1093/bib/bbae384
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bib/bbae384
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fbib%2Fbbae384&DestApp=DOI&SrcAppSID=EUW1ED0B78lzEE8v6L4y2Dp3dRHbk&SrcJTitle=BRIEFINGS+IN+BIOINFORMATICS&DestDOIRegistrantName=Oxford+University+Press
Volltext
Verfasserangaben:Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen

MARC

LEADER 00000caa a2200000 c 4500
001 1917876912
003 DE-627
005 20250716233321.0
007 cr uuu---uuuuu
008 250224s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/bib/bbae384  |2 doi 
035 |a (DE-627)1917876912 
035 |a (DE-599)KXP1917876912 
035 |a (OCoLC)1528019570 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Zhang, Shunjie  |e VerfasserIn  |0 (DE-588)1357415532  |0 (DE-627)1917879091  |4 aut 
245 1 0 |a BioM2  |b biologically informed multi-stage machine learning for phenotype prediction using omics data  |c Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen 
264 1 |c September 2024 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 10. August 2024 
500 |a Gesehen am 24.02.2025 
520 |a Navigating the complex landscape of high-dimensional omics data with machine learning models presents a significant challenge. The integration of biological domain knowledge into these models has shown promise in creating more meaningful stratifications of predictor variables, leading to algorithms that are both more accurate and generalizable. However, the wider availability of machine learning tools capable of incorporating such biological knowledge remains limited. Addressing this gap, we introduce BioM2, a novel R package designed for biologically informed multistage machine learning. BioM2 uniquely leverages biological information to effectively stratify and aggregate high-dimensional biological data in the context of machine learning. Demonstrating its utility with genome-wide DNA methylation and transcriptome-wide gene expression data, BioM2 has shown to enhance predictive performance, surpassing traditional machine learning models that operate without the integration of biological knowledge. A key feature of BioM2 is its ability to rank predictor variables within biological categories, specifically Gene Ontology pathways. This functionality not only aids in the interpretability of the results but also enables a subsequent modular network analysis of these variables, shedding light on the intricate systems-level biology underpinning the predictive outcome. We have proposed a biologically informed multistage machine learning framework termed BioM2 for phenotype prediction based on omics data. BioM2 has been incorporated into the BioM2 CRAN package (https://cran.r-project.org/web/packages/BioM2/index.html). 
650 4 |a BioM2 
650 4 |a BRAIN 
650 4 |a DNA methylome 
650 4 |a EXPRESSION 
650 4 |a Gene Ontology 
650 4 |a machine learning 
650 4 |a PATHWAY 
650 4 |a phenotype prediction 
650 4 |a transcriptome 
700 1 |a Li, Pan  |e VerfasserIn  |4 aut 
700 1 |a Wang, Shenghan  |e VerfasserIn  |4 aut 
700 1 |a Zhu, Jijun  |e VerfasserIn  |4 aut 
700 1 |a Huang, Zhongting  |e VerfasserIn  |4 aut 
700 1 |a Cai, Fuqiang  |e VerfasserIn  |4 aut 
700 1 |a Freidel, Sebastian  |e VerfasserIn  |0 (DE-588)1348631392  |0 (DE-627)1908866101  |4 aut 
700 1 |a Ling, Fei  |e VerfasserIn  |4 aut 
700 1 |a Schwarz, Emanuel  |e VerfasserIn  |0 (DE-588)1055051260  |0 (DE-627)792581040  |0 (DE-576)411121596  |4 aut 
700 1 |a Chen, Junfang  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Briefings in bioinformatics  |d Oxford [u.a.] : Oxford University Press, 2000  |g 25(2024), 5 vom: Sept., Artikel-ID bbae384, Seite 1-13  |h Online-Ressource  |w (DE-627)325359237  |w (DE-600)2036055-1  |w (DE-576)099210959  |x 1477-4054  |7 nnas  |a BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics data 
773 1 8 |g volume:25  |g year:2024  |g number:5  |g month:09  |g elocationid:bbae384  |g pages:1-13  |g extent:13  |a BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics data 
856 4 0 |u https://doi.org/10.1093/bib/bbae384  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fbib%2Fbbae384&DestApp=DOI&SrcAppSID=EUW1ED0B78lzEE8v6L4y2Dp3dRHbk&SrcJTitle=BRIEFINGS+IN+BIOINFORMATICS&DestDOIRegistrantName=Oxford+University+Press  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250224 
993 |a Article 
994 |a 2024 
998 |g 1055051260  |a Schwarz, Emanuel  |m 1055051260:Schwarz, Emanuel  |d 60000  |e 60000PS1055051260  |k 0/60000/  |p 9 
999 |a KXP-PPN1917876912  |e 4670019619 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"September 2024","dateIssuedKey":"2024"}],"relHost":[{"title":[{"title":"Briefings in bioinformatics","title_sort":"Briefings in bioinformatics"}],"disp":"BioM2 biologically informed multi-stage machine learning for phenotype prediction using omics dataBriefings in bioinformatics","language":["eng"],"note":["Gesehen am 18.01.24"],"part":{"volume":"25","text":"25(2024), 5 vom: Sept., Artikel-ID bbae384, Seite 1-13","extent":"13","issue":"5","year":"2024","pages":"1-13"},"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"publisher":"Oxford University Press ; Henry Stewart Publ.","dateIssuedDisp":"2000-","publisherPlace":"Oxford [u.a.] ; London [u.a.]","dateIssuedKey":"2000"}],"pubHistory":["1.2000 -"],"recId":"325359237","id":{"issn":["1477-4054"],"zdb":["2036055-1"],"eki":["325359237"]}}],"physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"note":["Online verfügbar: 10. August 2024","Gesehen am 24.02.2025"],"language":["eng"],"id":{"eki":["1917876912"],"doi":["10.1093/bib/bbae384"]},"recId":"1917876912","name":{"displayForm":["Shunjie Zhang, Pan Li, Shenghan Wang, Jijun Zhu, Zhongting Huang, Fuqiang Cai, Sebastian Freidel, Fei Ling, Emanuel Schwarz, Junfang Chen"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"display":"Zhang, Shunjie","roleDisplay":"VerfasserIn","given":"Shunjie","family":"Zhang","role":"aut"},{"given":"Pan","roleDisplay":"VerfasserIn","display":"Li, Pan","family":"Li","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Shenghan","display":"Wang, Shenghan","family":"Wang","role":"aut"},{"display":"Zhu, Jijun","roleDisplay":"VerfasserIn","given":"Jijun","family":"Zhu","role":"aut"},{"role":"aut","family":"Huang","roleDisplay":"VerfasserIn","given":"Zhongting","display":"Huang, Zhongting"},{"role":"aut","roleDisplay":"VerfasserIn","given":"Fuqiang","display":"Cai, Fuqiang","family":"Cai"},{"family":"Freidel","roleDisplay":"VerfasserIn","display":"Freidel, Sebastian","given":"Sebastian","role":"aut"},{"family":"Ling","given":"Fei","roleDisplay":"VerfasserIn","display":"Ling, Fei","role":"aut"},{"role":"aut","given":"Emanuel","roleDisplay":"VerfasserIn","display":"Schwarz, Emanuel","family":"Schwarz"},{"role":"aut","family":"Chen","display":"Chen, Junfang","roleDisplay":"VerfasserIn","given":"Junfang"}],"title":[{"subtitle":"biologically informed multi-stage machine learning for phenotype prediction using omics data","title":"BioM2","title_sort":"BioM2"}]} 
SRT |a ZHANGSHUNJBIOM22024